These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 2964442)
1. Conformational changes in the vicinity of the N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to the specific thiol of sarcoplasmic reticulum Ca2+-ATPase throughout the catalytic cycle. Obara M; Suzuki H; Kanazawa T J Biol Chem; 1988 Mar; 263(8):3690-7. PubMed ID: 2964442 [TBL] [Abstract][Full Text] [Related]
2. Effects of divalent cations bound to the catalytic site on ATP-induced conformational changes in the sarcoplasmic reticulum Ca(2+)-ATPase: stopped-flow analysis of the fluorescence of N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to cysteine-674. Suzuki H; Nakamura S; Kanazawa T Biochemistry; 1994 Jul; 33(27):8240-6. PubMed ID: 8031758 [TBL] [Abstract][Full Text] [Related]
3. Changes in the steady-state fluorescence anisotropy of N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to the specific thiol of sarcoplasmic reticulum Ca2+-ATPase throughout the catalytic cycle. Suzuki H; Obara M; Kubo K; Kanazawa T J Biol Chem; 1989 Jan; 264(2):920-7. PubMed ID: 2521338 [TBL] [Abstract][Full Text] [Related]
4. A conformational change of N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled sarcoplasmic reticulum Ca2+-ATPase upon ATP binding to the catalytic site. Suzuki H; Obara M; Kuwayama H; Kanazawa T J Biol Chem; 1987 Nov; 262(32):15448-56. PubMed ID: 2960668 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the substrate-induced conformational change of N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled sarcoplasmic reticulum Ca2(+)-ATPase by using different kinds of substrate. Kubo K; Suzuki H; Kanazawa T Biochim Biophys Acta; 1990 Sep; 1040(2):251-9. PubMed ID: 2144771 [TBL] [Abstract][Full Text] [Related]
6. Selective inhibition by lasalocid of hydrolysis of the ADP-insensitive phosphoenzyme in the catalytic cycle of sarcoplasmic reticulum Ca2(+)-ATPase. Kawashima T; Hara H; Kanazawa T J Biol Chem; 1990 Jul; 265(19):10993-9. PubMed ID: 2141607 [TBL] [Abstract][Full Text] [Related]
7. The tryptophan fluorescence change upon conformational transition of the phosphoenzyme intermediate in sarcoplasmic reticulum Ca(2+)-ATPase is revealed in the absence of K+ and the presence of lasalocid. Suzuki H; Kanazawa T J Biol Chem; 1995 Feb; 270(7):3089-93. PubMed ID: 7852390 [TBL] [Abstract][Full Text] [Related]
8. The ATP-induced change of tryptophan fluorescence reflects a conformational change upon formation of ADP-sensitive phosphoenzyme in the sarcoplasmic reticulum Ca(2+)-ATPase. Stopped-flow spectrofluorometry and continuous flow-rapid quenching method. Nakamura S; Suzuki H; Kanazawa T J Biol Chem; 1994 Jun; 269(23):16015-9. PubMed ID: 8206898 [TBL] [Abstract][Full Text] [Related]
9. Phosphoenzyme conformational states and nucleotide-binding site hydrophobicity following thiol modification of the Ca2+-ATPase of sarcoplasmic reticulum from skeletal muscle. Davidson GA; Berman MC J Biol Chem; 1987 May; 262(15):7041-6. PubMed ID: 2953714 [TBL] [Abstract][Full Text] [Related]
10. Fluorometric study on conformational changes in the catalytic cycle of sarcoplasmic reticulum Ca(2+)-ATPase. Kanazawa T; Suzuki H; Daiho T; Yamasaki K Biosci Rep; 1995 Oct; 15(5):317-26. PubMed ID: 8825034 [TBL] [Abstract][Full Text] [Related]
11. Coincidence of H+ binding and Ca2+ dissociation in the sarcoplasmic reticulum Ca-ATPase during ATP hydrolysis. Yamaguchi M; Kanazawa T J Biol Chem; 1985 Apr; 260(8):4896-900. PubMed ID: 3157686 [TBL] [Abstract][Full Text] [Related]
12. Reduction in water activity greatly retards the phosphoryl transfer from ATP to enzyme protein in the catalytic cycle of sarcoplasmic reticulum Ca2+-ATPase. Suzuki H; Kanazawa T J Biol Chem; 1996 Mar; 271(10):5481-6. PubMed ID: 8621405 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change. Hanel AM; Jencks WP Biochemistry; 1990 May; 29(21):5210-20. PubMed ID: 2143081 [TBL] [Abstract][Full Text] [Related]
14. Formation of the ADP-insensitive phosphoenzyme intermediate in the sarcoplasmic reticulum Ca2+-ATPase of which both Cys344 and Cys364 are modified by N-ethylmaleimide. Suzuki H; Kanazawa T Biochemistry; 1999 Jan; 38(2):820-5. PubMed ID: 9888823 [TBL] [Abstract][Full Text] [Related]
15. Selective inhibition by ionophore A23187 of the enzyme isomerization in the catalytic cycle of sarcoplasmic reticulum Ca2+-ATPase. Hara H; Kanazawa T J Biol Chem; 1986 Dec; 261(35):16584-90. PubMed ID: 2946687 [TBL] [Abstract][Full Text] [Related]
16. Reaction mechanism of calcium-ATPase of sarcoplasmic reticulum. Substrates for phosphorylation reaction and back reaction, and further resolution of phosphorylated intermediates. Yamada S; Ikemoto N J Biol Chem; 1980 Apr; 255(7):3108-19. PubMed ID: 6444634 [TBL] [Abstract][Full Text] [Related]
17. A fluorescence probe study of the phosphorylation reaction of the calcium ATPase of sarcoplasmic reticulum. Miki K; Scott TL; Ikemoto N J Biol Chem; 1981 Sep; 256(18):9382-5. PubMed ID: 6457035 [TBL] [Abstract][Full Text] [Related]
18. Transient-state kinetics of the ADP-insensitive phosphoenzyme in sarcoplasmic reticulum: implications for transient-state calcium translocation. Froehlich JP; Heller PF Biochemistry; 1985 Jan; 24(1):126-36. PubMed ID: 3158340 [TBL] [Abstract][Full Text] [Related]
19. Phosphoenzyme decomposition in dog cardiac sarcoplasmic reticulum Ca2+-ATPase. Wang T Biochemistry; 1987 Dec; 26(25):8360-5. PubMed ID: 2964866 [TBL] [Abstract][Full Text] [Related]
20. Changes in affinity for calcium ions with the formation of two kinds of phosphoenzyme in the Ca2+,Mg2+-dependent ATPase of sarcoplasmic reticulum. Nakamura Y; Tonomura Y J Biochem; 1982 Feb; 91(2):449-61. PubMed ID: 6121794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]