These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29644443)

  • 21. Effect of temperature ramp rate during the primary drying process on the properties of amorphous-based lyophilized cake, Part 2: Successful lyophilization by adopting a fast ramp rate during primary drying in protein formulations.
    Ohori R; Akita T; Yamashita C
    Eur J Pharm Biopharm; 2018 Sep; 130():83-95. PubMed ID: 29913271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lyophilization Cycle Design for Dual Chamber Cartridges and a Method for Online Process Control: The "DCC LyoMate" Procedure.
    Korpus C; Friess W
    J Pharm Sci; 2017 Aug; 106(8):2077-2087. PubMed ID: 28479354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wireless sensor networks for pharmaceutical lyophilization: Quantification of local gas pressure and temperature in primary drying.
    Strongrich A; Alexeenko A
    Eur J Pharm Biopharm; 2021 Dec; 169():52-63. PubMed ID: 34547415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Freeze-Drying From Organic Cosolvent Systems, Part 1: Thermal Analysis of Cosolvent-Based Placebo Formulations in the Frozen State.
    Kunz C; Schuldt-Lieb S; Gieseler H
    J Pharm Sci; 2018 Mar; 107(3):887-896. PubMed ID: 29133233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy.
    Reddy JP; Jones JW; Wray PS; Dennis AB; Brown J; Timmins P
    Int J Pharm; 2018 Apr; 541(1-2):253-260. PubMed ID: 29481947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of secondary drying condition for desired residual water content in a lyophilized product using a novel simulation program for pharmaceutical lyophilization.
    Kodama T; Takeuchi M; Wakiyama N; Terada K
    Int J Pharm; 2014 Jul; 469(1):59-66. PubMed ID: 24751732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lyophilization Process Design and Development: A Single-Step Drying Approach.
    Pansare SK; Patel SM
    J Pharm Sci; 2019 Apr; 108(4):1423-1433. PubMed ID: 30468830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins.
    Butreddy A; Janga KY; Ajjarapu S; Sarabu S; Dudhipala N
    Int J Biol Macromol; 2021 Jan; 167():309-325. PubMed ID: 33275971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity Study to Assess the Robustness of Primary Drying Process in Pharmaceutical Lyophilization.
    Adhikari N; Zhu T; Jameel F; Tharp T; Shang S; Alexeenko A
    J Pharm Sci; 2020 Feb; 109(2):1043-1049. PubMed ID: 31606541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid Depressurization Based Controlled Ice Nucleation in Pharmaceutical Freeze-drying: The Roles of the Ballast Gas and the Vial.
    Strongrich A; Lim FJ; Kumar L; Alexeenko A
    J Pharm Sci; 2021 Nov; 110(11):3639-3647. PubMed ID: 34303673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of freeze-drying processes for pharmaceuticals: practical advice.
    Tang X; Pikal MJ
    Pharm Res; 2004 Feb; 21(2):191-200. PubMed ID: 15032301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of a temperature ramp approach (TRA) to design an optimum and robust freeze-drying process for pharmaceutical formulations.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    Int J Pharm; 2020 Mar; 578():119116. PubMed ID: 32027958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of Primary Drying in Lyophilization During Early-Phase Drug Development Using a Definitive Screening Design With Formulation and Process Factors.
    Goldman JM; More HT; Yee O; Borgeson E; Remy B; Rowe J; Sadineni V
    J Pharm Sci; 2018 Oct; 107(10):2592-2600. PubMed ID: 29890172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.
    Vollrath I; Pauli V; Friess W; Freitag A; Hawe A; Winter G
    J Pharm Sci; 2017 May; 106(5):1249-1257. PubMed ID: 28063826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals.
    Kasper JC; Friess W
    Eur J Pharm Biopharm; 2011 Jun; 78(2):248-63. PubMed ID: 21426937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Basic Principles of Lyophilization, Part 1.
    Akers MJ
    Int J Pharm Compd; 2015; 19(6):471-6. PubMed ID: 26891561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lyophilization of unit dose pharmaceutical dosage forms.
    Thapa P; Baillie AJ; Stevens HN
    Drug Dev Ind Pharm; 2003 May; 29(5):595-602. PubMed ID: 12779289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lyophilization cycle development for interleukin-2.
    Vemuri S
    Dev Biol Stand; 1992; 74():341-51. PubMed ID: 1592183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiol-disulfide exchange in peptides derived from human growth hormone during lyophilization and storage in the solid state.
    Chandrasekhar S; Topp EM
    J Pharm Sci; 2015 Apr; 104(4):1291-302. PubMed ID: 25631887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.