These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 29644494)

  • 1. Review of CRISPR/Cas9 sgRNA Design Tools.
    Cui Y; Xu J; Cheng M; Liao X; Peng S
    Interdiscip Sci; 2018 Jun; 10(2):455-465. PubMed ID: 29644494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [CRISPR/CAS9, the King of Genome Editing Tools].
    Bannikov AV; Lavrov AV
    Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature.
    Liu Q; He D; Xie L
    PLoS Comput Biol; 2019 Oct; 15(10):e1007480. PubMed ID: 31658261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Tools and Resources for CRISPR/Cas Genome Editing.
    Li C; Chu W; Gill RA; Sang S; Shi Y; Hu X; Yang Y; Zaman QU; Zhang B
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):108-126. PubMed ID: 35341983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis.
    Yu Z; Chen Q; Chen W; Zhang X; Mei F; Zhang P; Zhao M; Wang X; Shi N; Jackson S; Hong Y
    J Integr Plant Biol; 2018 May; 60(5):376-381. PubMed ID: 29226588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences.
    Prykhozhij SV; Rajan V; Gaston D; Berman JN
    PLoS One; 2015; 10(3):e0119372. PubMed ID: 25742428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
    Hiranniramol K; Chen Y; Wang X
    Methods Mol Biol; 2020; 2115():351-364. PubMed ID: 32006410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9.
    Ceasar SA; Rajan V; Prykhozhij SV; Berman JN; Ignacimuthu S
    Biochim Biophys Acta; 2016 Sep; 1863(9):2333-44. PubMed ID: 27350235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the CRISPR/Cas system for genome editing in microalgae.
    Zhang YT; Jiang JY; Shi TQ; Sun XM; Zhao QY; Huang H; Ren LJ
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3239-3248. PubMed ID: 30877356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system.
    Matson AW; Hosny N; Swanson ZA; Hering BJ; Burlak C
    PLoS One; 2019; 14(12):e0226107. PubMed ID: 31821359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [In silico CRISPR-based sgRNA design].
    Wang Y; Chuai G; Yan J; Shi L; Liu Q
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1744-1756. PubMed ID: 29082722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique.
    Zhang B; Zhou J; Li M; Wei Y; Wang J; Wang Y; Shi P; Li X; Huang Z; Tang H; Song Z
    Anal Bioanal Chem; 2021 Apr; 413(9):2447-2456. PubMed ID: 33661348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guide RNA engineering for versatile Cas9 functionality.
    Nowak CM; Lawson S; Zerez M; Bleris L
    Nucleic Acids Res; 2016 Nov; 44(20):9555-9564. PubMed ID: 27733506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimeric DNA-RNA Guide RNA Designs.
    Lu S; Zhang Y; Yin H
    Methods Mol Biol; 2021; 2162():79-85. PubMed ID: 32926379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field.
    He ZY; Men K; Qin Z; Yang Y; Xu T; Wei YQ
    Sci China Life Sci; 2017 May; 60(5):458-467. PubMed ID: 28527117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking CRISPR on-target sgRNA design.
    Yan J; Chuai G; Zhou C; Zhu C; Yang J; Zhang C; Gu F; Xu H; Wei J; Liu Q
    Brief Bioinform; 2018 Jul; 19(4):721-724. PubMed ID: 28203699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.
    Tang YD; Guo JC; Wang TY; Zhao K; Liu JT; Gao JC; Tian ZJ; An TQ; Cai XH
    FASEB J; 2018 Aug; 32(8):4293-4301. PubMed ID: 29509513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination.
    Peng H; Le C; Wu J; Li XF; Zhang H; Le XC
    ACS Nano; 2020 Mar; 14(3):2817-2826. PubMed ID: 32048826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.