These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29644770)

  • 1. TMEM55B contributes to lysosomal homeostasis and amino acid-induced mTORC1 activation.
    Hashimoto Y; Shirane M; Nakayama KI
    Genes Cells; 2018 Jun; 23(6):418-434. PubMed ID: 29644770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly.
    Stransky LA; Forgac M
    J Biol Chem; 2015 Nov; 290(45):27360-27369. PubMed ID: 26378229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes.
    Willett R; Martina JA; Zewe JP; Wills R; Hammond GRV; Puertollano R
    Nat Commun; 2017 Nov; 8(1):1580. PubMed ID: 29146937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase.
    Zoncu R; Bar-Peled L; Efeyan A; Wang S; Sancak Y; Sabatini DM
    Science; 2011 Nov; 334(6056):678-83. PubMed ID: 22053050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of mTORC1 activation in response to amino acids.
    Manifava M; Smith M; Rotondo S; Walker S; Niewczas I; Zoncu R; Clark J; Ktistakis NT
    Elife; 2016 Oct; 5():. PubMed ID: 27725083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of lysosomal positioning via TMEM55B phosphorylation.
    Araki M; Kontani K
    J Biochem; 2021 Jul; 169(5):507-509. PubMed ID: 33537719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes.
    Abu-Remaileh M; Wyant GA; Kim C; Laqtom NN; Abbasi M; Chan SH; Freinkman E; Sabatini DM
    Science; 2017 Nov; 358(6364):807-813. PubMed ID: 29074583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of TMEM55B by Erk/MAPK regulates lysosomal positioning.
    Takemasu S; Nigorikawa K; Yamada M; Tsurumi G; Kofuji S; Takasuga S; Hazeki K
    J Biochem; 2019 Aug; 166(2):175-185. PubMed ID: 31329883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly.
    Ratto E; Chowdhury SR; Siefert NS; Schneider M; Wittmann M; Helm D; Palm W
    Nat Commun; 2022 Aug; 13(1):4848. PubMed ID: 35977928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of the vacuolar-type H
    Kissing S; Rudnik S; Damme M; Lüllmann-Rauch R; Ichihara A; Kornak U; Eskelinen EL; Jabs S; Heeren J; De Brabander JK; Haas A; Saftig P
    Autophagy; 2017 Apr; 13(4):670-685. PubMed ID: 28129027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylinositol-(4,5)-Bisphosphate Regulates Plasma Cholesterol Through LDL (Low-Density Lipoprotein) Receptor Lysosomal Degradation.
    Qin Y; Ting F; Kim MJ; Strelnikov J; Harmon J; Gao F; Dose A; Teng BB; Alipour MA; Yao Z; Crooke R; Krauss RM; Medina MW
    Arterioscler Thromb Vasc Biol; 2020 May; 40(5):1311-1324. PubMed ID: 32188273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloroquine and bafilomycin A mimic lysosomal storage disorders and impair mTORC1 signalling.
    Fedele AO; Proud CG
    Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32285908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining AMPK Activation via the Lysosomal v-ATPase-Ragulator-AXIN/LKB1 Axis.
    Zhang CS; Li M; Zong Y; Lin SC
    Methods Mol Biol; 2018; 1732():393-411. PubMed ID: 29480489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidermal growth factor-induced vacuolar (H+)-atpase assembly: a role in signaling via mTORC1 activation.
    Xu Y; Parmar A; Roux E; Balbis A; Dumas V; Chevalier S; Posner BI
    J Biol Chem; 2012 Jul; 287(31):26409-22. PubMed ID: 22689575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological inhibition of lysosomes activates the MTORC1 signaling pathway in chondrocytes in an autophagy-independent manner.
    Newton PT; Vuppalapati KK; Bouderlique T; Chagin AS
    Autophagy; 2015; 11(9):1594-607. PubMed ID: 26259639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids.
    Hoxhaj G; Caddye E; Najafov A; Houde VP; Johnson C; Dissanayake K; Toth R; Campbell DG; Prescott AR; MacKintosh C
    Elife; 2016 Apr; 5():. PubMed ID: 27244671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis.
    Wang W; Xia Z; Farré JC; Subramani S
    Autophagy; 2018; 14(9):1574-1585. PubMed ID: 29940807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent regeneration.
    Takayama K; Muto A; Kikuchi Y
    Sci Rep; 2018 May; 8(1):8278. PubMed ID: 29844341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PtdIns3P controls mTORC1 signaling through lysosomal positioning.
    Hong Z; Pedersen NM; Wang L; Torgersen ML; Stenmark H; Raiborg C
    J Cell Biol; 2017 Dec; 216(12):4217-4233. PubMed ID: 29030394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective Lamtor5 Leads to Autoimmunity by Deregulating v-ATPase and Lysosomal Acidification.
    Zhang W; Sha Z; Tang Y; Jin C; Gao W; Chen C; Yu L; Lv N; Liu S; Xu F; Wang D; Shi L
    Adv Sci (Weinh); 2024 Jun; 11(22):e2400446. PubMed ID: 38639386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.