These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29645012)

  • 1. Utility of Satellite Remote Sensing for Land-Atmosphere Coupling and Drought Metrics.
    Roundy JK; Santanello JA
    J Hydrometeorol; 2017 Mar; 18(3):863-877. PubMed ID: 29645012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity.
    Zhou S; Williams AP; Berg AM; Cook BI; Zhang Y; Hagemann S; Lorenz R; Seneviratne SI; Gentine P
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18848-18853. PubMed ID: 31481606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Land-atmosphere coupling speeds up flash drought onset.
    Wang Y; Yuan X
    Sci Total Environ; 2022 Dec; 851(Pt 1):158109. PubMed ID: 35987240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing a remotely sensed drought monitoring indicator for Morocco.
    Bijaber N; Hadani DE; Saidi M; Svoboda MD; Wardlow BD; Hain CR; Poulsen CC; Yessef M; Rochdi A
    Geosciences (Basel); 2018; 8(2):. PubMed ID: 32802481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Downscaling satellite soil moisture using geomorphometry and machine learning.
    Guevara M; Vargas R
    PLoS One; 2019; 14(9):e0219639. PubMed ID: 31550248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of drought indices for monitoring drought based on remote sensing data.
    Wei W; Zhang J; Zhou L; Xie B; Zhou J; Li C
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):20408-20425. PubMed ID: 33405156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information theoretic evaluation of satellite soil moisture retrievals.
    Kumar SV; Dirmeyer PA; Peters-Lidard CD; Bindlish R; Bolten J
    Remote Sens Environ; 2018 Jan; 204():392-400. PubMed ID: 32636571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.
    Jones MO; Kimball JS; Small EE; Larson KM
    Int J Biometeorol; 2014 Aug; 58(6):1305-15. PubMed ID: 24005849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant functional traits and climate influence drought intensification and land-atmosphere feedbacks.
    Anderegg WRL; Trugman AT; Bowling DR; Salvucci G; Tuttle SE
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):14071-14076. PubMed ID: 31235581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring agricultural drought in Peshawar Valley, Pakistan using long -term satellite and meteorological data.
    Javed T; Bhattarai N; Acharya BS; Zhang J
    Environ Sci Pollut Res Int; 2024 Jan; 31(3):3598-3613. PubMed ID: 38085478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction and application of the temperature-vegetation-precipitation drought index in mainland China based on remote sensing datasets and a spatial distance model.
    Wei W; Zhang H; Ma L; Wang X; Guo Z; Xie B; Zhou J; Wang J
    J Environ Manage; 2022 Dec; 323():116208. PubMed ID: 36261977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-satellite framework to rapidly evaluate extreme biosphere cascades: The Western US 2021 drought and heatwave.
    Feldman AF; Zhang Z; Yoshida Y; Gentine P; Chatterjee A; Entekhabi D; Joiner J; Poulter B
    Glob Chang Biol; 2023 Jul; 29(13):3634-3651. PubMed ID: 37070967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dataset on the global distribution of shallow groundwater.
    Soylu ME; Bras RL
    Data Brief; 2023 Apr; 47():108973. PubMed ID: 36875209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of soil nitrogen emissions from riparian zones coupling simple process-oriented models with remote sensing data.
    Wang X; Mannaerts CM; Yang S; Gao Y; Zheng D
    Sci Total Environ; 2010 Jul; 408(16):3310-8. PubMed ID: 20417548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive drought index based on spatial principal component analysis and its application in northern China.
    Wei W; Yan P; Zhou L; Zhang H; Xie B; Zhou J
    Environ Monit Assess; 2024 Jan; 196(2):193. PubMed ID: 38265493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving SMAP soil moisture spatial resolution in different climatic conditions using remote sensing data.
    Imanpour F; Dehghani M; Yazdi M
    Environ Monit Assess; 2023 Nov; 195(12):1476. PubMed ID: 37966581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assimilation of SMAP Brightness Temperature Observations in the GEOS Land-Atmosphere Data Assimilation System.
    Reichle RH; Zhang SQ; Liu Q; Draper CS; Kolassa J; Todling R
    IEEE J Sel Top Appl Earth Obs Remote Sens; 2021; 14():10628-10643. PubMed ID: 34820044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrologic Remote Sensing and Land Surface Data Assimilation.
    Moradkhani H
    Sensors (Basel); 2008 May; 8(5):2986-3004. PubMed ID: 27879861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of dissolved organic carbon from inland waters at a large scale using satellite data and machine learning methods.
    Harkort L; Duan Z
    Water Res; 2023 Feb; 229():119478. PubMed ID: 36527868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.