These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 29645027)

  • 1. Silicon quantum dots with heavily boron and phosphorus codoped shell.
    Fujii M; Sugimoto H; Kano S
    Chem Commun (Camb); 2018 Apr; 54(35):4375-4389. PubMed ID: 29645027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-inorganic water-dispersible silicon quantum dots: highly efficient near-infrared luminescence in a wide pH range.
    Sugimoto H; Fujii M; Fukuda Y; Imakita K; Akamatsu K
    Nanoscale; 2014 Jan; 6(1):122-6. PubMed ID: 24189524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-lived luminescence of colloidal silicon quantum dots for time-gated fluorescence imaging in the second near infrared window in biological tissue.
    Sakiyama M; Sugimoto H; Fujii M
    Nanoscale; 2018 Aug; 10(29):13902-13907. PubMed ID: 29999078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise size separation of water-soluble red-to-near-infrared-luminescent silicon quantum dots by gel electrophoresis.
    Fujii M; Minami A; Sugimoto H
    Nanoscale; 2020 Apr; 12(16):9266-9271. PubMed ID: 32313916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Charge Tunneling in Codoped Silicon Nanodevices.
    Moraru D; Kaneko T; Tamura Y; Jupalli TT; Singh RS; Pandy C; Popa L; Iacomi F
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of boron and phosphorus codoped all-inorganic colloidal silicon nanocrystals from hydrogen silsesquioxane.
    Sugimoto H; Fujii M; Imakita K
    Nanoscale; 2014 Nov; 6(21):12354-9. PubMed ID: 25192435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.
    Zhang W; Chen G; Wang J; Ye BC; Zhong X
    Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled self-assembly of hydrophobic quantum dots through silanization.
    Yang P; Ando M; Murase N
    J Colloid Interface Sci; 2011 Sep; 361(1):9-15. PubMed ID: 21665221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging.
    Che D; Zhu X; Wang H; Duan Y; Zhang Q; Li Y
    J Colloid Interface Sci; 2016 Feb; 463():1-7. PubMed ID: 26513730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of near-infrared-emitting CdTeSe and CdZnTeSe quantum dots.
    Yang F; Yang P; Zhang L
    Luminescence; 2013; 28(6):836-41. PubMed ID: 23060275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and luminescence of monolayered boron nitride quantum dots.
    Lin L; Xu Y; Zhang S; Ross IM; Ong AC; Allwood DA
    Small; 2014 Jan; 10(1):60-5. PubMed ID: 23839969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D microstructure analysis of silicon-boron phosphide mixed nanocrystals.
    Nomoto K; Sugimoto H; Ceguerra AV; Fujii M; Ringer SP
    Nanoscale; 2020 Apr; 12(13):7256-7262. PubMed ID: 32196060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing a core-shell structure of heavily doped silicon quantum dots by electron microscopy using an atomically thin support film.
    Sugimoto H; Yamamura M; Sakiyama M; Fujii M
    Nanoscale; 2018 Apr; 10(16):7357-7362. PubMed ID: 29637958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots.
    Erogbogbo F; Chang CW; May J; Prasad PN; Swihart MT
    Nanoscale; 2012 Aug; 4(16):5163-8. PubMed ID: 22802158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycerol-regulated facile synthesis and targeted cell imaging of highly luminescent Ag2Te quantum dots with tunable near-infrared emission.
    Jin H; Gui R; Sun J; Wang Y
    Colloids Surf B Biointerfaces; 2016 Jul; 143():118-123. PubMed ID: 26998873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photostable water-dispersible NIR-emitting CdTe/CdS/ZnS core-shell-shell quantum dots for high-resolution tumor targeting.
    Wang J; Lu Y; Peng F; Zhong Y; Zhou Y; Jiang X; Su Y; He Y
    Biomaterials; 2013 Dec; 34(37):9509-18. PubMed ID: 24054845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation mechanism of highly luminescent silica capsules incorporating multiple hydrophobic quantum dots with various emission wavelengths.
    Li C; Murase N
    J Colloid Interface Sci; 2013 Dec; 411():82-91. PubMed ID: 24112844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots.
    Li H; Tay RY; Tsang SH; Zhen X; Teo EH
    Small; 2015 Dec; 11(48):6491-9. PubMed ID: 26574683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly luminescent hybrid SiO2-coated CdTe quantum dots: synthesis and properties.
    Liu N; Yang P
    Luminescence; 2013; 28(4):542-50. PubMed ID: 23460504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon quantum dots for biological applications.
    Chinnathambi S; Chen S; Ganesan S; Hanagata N
    Adv Healthc Mater; 2014 Jan; 3(1):10-29. PubMed ID: 23949967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.