These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29645055)

  • 1. Cysteine-reactive probes and their use in chemical proteomics.
    Hoch DG; Abegg D; Adibekian A
    Chem Commun (Camb); 2018 May; 54(36):4501-4512. PubMed ID: 29645055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical-proteomic strategies to investigate cysteine posttranslational modifications.
    Couvertier SM; Zhou Y; Weerapana E
    Biochim Biophys Acta; 2014 Dec; 1844(12):2315-30. PubMed ID: 25291386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-Based Prediction of Cysteine Reactivity Using Machine Learning.
    Wang H; Chen X; Li C; Liu Y; Yang F; Wang C
    Biochemistry; 2018 Jan; 57(4):451-460. PubMed ID: 29072073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical proteomic identification of functional cysteines with atypical electrophile reactivities.
    Litwin K; Crowley VM; Suciu RM; Boger DL; Cravatt BF
    Tetrahedron Lett; 2021 Mar; 67():. PubMed ID: 33776155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Toxicity Sulfonium-Based Probes for Cysteine-Specific Profiling in Live Cells.
    Wang R; Yang D; Tian T; An Y; Wan C; Chang Q; Liang M; Hou Z; Wang Y; Zhang L; Li Z
    Anal Chem; 2022 Mar; 94(10):4366-4372. PubMed ID: 35244395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine-specific Chemical Proteomics: From Target Identification to Drug Discovery.
    Hoch DG; Abegg D; Wang C; Shuster A; Adibekian A
    Chimia (Aarau); 2016 Nov; 70(11):764-767. PubMed ID: 28661335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introducing bioorthogonal functionalities into proteins in living cells.
    Hao Z; Hong S; Chen X; Chen PR
    Acc Chem Res; 2011 Sep; 44(9):742-51. PubMed ID: 21634380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent protein modification: the current landscape of residue-specific electrophiles.
    Shannon DA; Weerapana E
    Curr Opin Chem Biol; 2015 Feb; 24():18-26. PubMed ID: 25461720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-based proteomics: enzymatic activity profiling in complex proteomes.
    Schmidinger H; Hermetter A; Birner-Gruenberger R
    Amino Acids; 2006 Jun; 30(4):333-50. PubMed ID: 16773240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells.
    Vinogradova EV; Cravatt BF
    STAR Protoc; 2021 Jun; 2(2):100458. PubMed ID: 33899026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current developments in activity-based protein profiling.
    Willems LI; Overkleeft HS; van Kasteren SI
    Bioconjug Chem; 2014 Jul; 25(7):1181-91. PubMed ID: 24946272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfhydryl-specific probe for monitoring protein redox sensitivity.
    Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ
    ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probes for activity-based profiling of plant proteases.
    van der Hoorn RA; Kaiser M
    Physiol Plant; 2012 May; 145(1):18-27. PubMed ID: 21985675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome-Wide Profiling of Targets of Cysteine reactive Small Molecules by Using Ethynyl Benziodoxolone Reagents.
    Abegg D; Frei R; Cerato L; Prasad Hari D; Wang C; Waser J; Adibekian A
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10852-7. PubMed ID: 26211368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assigning functionality to cysteines by base editing of cancer dependency genes.
    Li H; Ma T; Remsberg JR; Won SJ; DeMeester KE; Njomen E; Ogasawara D; Zhao KT; Huang TP; Lu B; Simon GM; Melillo B; Schreiber SL; Lykke-Andersen J; Liu DR; Cravatt BF
    Nat Chem Biol; 2023 Nov; 19(11):1320-1330. PubMed ID: 37783940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting bioorthogonal chemistry to elucidate protein-lipid binding interactions and other biological roles of phospholipids.
    Best MD; Rowland MM; Bostic HE
    Acc Chem Res; 2011 Sep; 44(9):686-98. PubMed ID: 21548554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.