These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2964727)

  • 21. Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man.
    Cresswell AG
    Eur J Appl Physiol Occup Physiol; 1993; 66(4):315-20. PubMed ID: 8495692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trunk strength, muscle activity and spinal loads in maximum isometric flexion and extension exertions: a combined in vivo-computational study.
    El Ouaaid Z; Shirazi-Adl A; Plamondon A; Larivière C
    J Biomech; 2013 Sep; 46(13):2228-35. PubMed ID: 23871523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trunk antagonist co-activation is associated with impaired neuromuscular performance.
    Reeves NP; Cholewicki J; Milner T; Lee AS
    Exp Brain Res; 2008 Jul; 188(3):457-63. PubMed ID: 18443772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of a Passive Back-Support Exosuit on Erector Spinae and Abdominal Muscle Activity During Short-Duration, Asymmetric Trunk Posture Maintenance Tasks.
    Kang SH; Mirka GA
    Hum Factors; 2024 Jul; 66(7):1830-1843. PubMed ID: 37635094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creep and fatigue development in the low back in static flexion.
    Shin G; D'Souza C; Liu YH
    Spine (Phila Pa 1976); 2009 Aug; 34(17):1873-8. PubMed ID: 19644340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An electromyography-assisted model to estimate trunk muscle forces during fatiguing repetitive trunk exertions.
    Sparto PJ; Parnianpour M
    J Spinal Disord; 1999 Dec; 12(6):509-18. PubMed ID: 10598994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of trunk muscle forces and spinal loads during fatiguing repetitive trunk exertions.
    Sparto PJ; Parnianpour M
    Spine (Phila Pa 1976); 1998 Dec; 23(23):2563-73. PubMed ID: 9854755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intra-abdominal pressure and trunk muscle activity during lifting. IV. The causal factors of the intra-abdominal pressure rise.
    Hemborg B; Moritz U; Löwing H
    Scand J Rehabil Med; 1985; 17(1):25-38. PubMed ID: 3159082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Torque and EMG in isometric graded flexion-rotation and extension-rotation.
    Kumar S; Narayan Y
    Ergonomics; 2001 Jun; 44(8):795-813. PubMed ID: 11450877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trunk muscle co-contraction increases during fatiguing, isometric, lateral bend exertions. Possible implications for spine stability.
    Potvin JR; O'Brien PR
    Spine (Phila Pa 1976); 1998 Apr; 23(7):774-80; discussion 781. PubMed ID: 9563107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relaxation phenomenon in lumbar trunk muscles during lateral bending.
    Raftopoulos DD; Rafko MC; Green M; Schultz AB
    Clin Biomech (Bristol); 1988 Aug; 3(3):166-72. PubMed ID: 23915894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diverging intramuscular activity patterns in back and abdominal muscles during trunk rotation.
    Andersson EA; Grundström H; Thorstensson A
    Spine (Phila Pa 1976); 2002 Mar; 27(6):E152-60. PubMed ID: 11884920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks.
    Arjmand N; Shirazi-Adl A; Bazrgari B
    Clin Biomech (Bristol); 2006 Aug; 21(7):668-75. PubMed ID: 16678948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lumbar spine stability can be augmented with an abdominal belt and/or increased intra-abdominal pressure.
    Cholewicki J; Juluru K; Radebold A; Panjabi MM; McGill SM
    Eur Spine J; 1999; 8(5):388-95. PubMed ID: 10552322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An empirical approach to characterizing trunk muscle coactivation using simulation input modeling techniques.
    Mirka GA; Glasscock NF; Stanfield PM; Wilson JR
    J Biomech; 2000 Dec; 33(12):1701-4. PubMed ID: 11006396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trunk biomechanics during maximum isometric axial torque exertions in upright standing.
    Arjmand N; Shirazi-Adl A; Parnianpour M
    Clin Biomech (Bristol); 2008 Oct; 23(8):969-78. PubMed ID: 18513843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks.
    Abdoli-E M; Agnew MJ; Stevenson JM
    Clin Biomech (Bristol); 2006 Jun; 21(5):456-65. PubMed ID: 16494978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lumbar trunk muscle use in standing isometric heavy exertions.
    Schultz A; Cromwell R; Warwick D; Andersson G
    J Orthop Res; 1987; 5(3):320-9. PubMed ID: 3625355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electromyographic activity of voluntarily activated trunk flexor and extensor muscles in post-stroke hemiparetic subjects.
    Dickstein R; Shefi S; Marcovitz E; Villa Y
    Clin Neurophysiol; 2004 Apr; 115(4):790-6. PubMed ID: 15003758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of back muscles during voluntary abduction of the contralateral arm in humans.
    Davey NJ; Lisle RM; Loxton-Edwards B; Nowicky AV; McGregor AH
    Spine (Phila Pa 1976); 2002 Jun; 27(12):1355-60. PubMed ID: 12065986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.