These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29648573)

  • 1. A comprehensive web tool for toehold switch design.
    To AC; Chu DH; Wang AR; Li FC; Chiu AW; Gao DY; Choi CHJ; Kong SK; Chan TF; Chan KM; Yip KY
    Bioinformatics; 2018 Aug; 34(16):2862-2864. PubMed ID: 29648573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating Responses of Toehold Switches by an Inhibitory Hairpin.
    Kim SJ; Leong M; Amrofell MB; Lee YJ; Moon TS
    ACS Synth Biol; 2019 Mar; 8(3):601-605. PubMed ID: 30721039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. End-to-end computational approach to the design of RNA biosensors for detecting miRNA biomarkers of cervical cancer.
    Baabu PRS; Srinivasan S; Nagarajan S; Muthamilselvan S; Selvi T; Suresh RR; Palaniappan A
    Synth Syst Biotechnol; 2022 Jun; 7(2):802-814. PubMed ID: 35475253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous and Universal Detection of Various Targets with a Dual-Step Transduced Toehold Switch Sensor.
    Li H; Tang Y; Li B
    Chembiochem; 2020 May; 21(10):1418-1422. PubMed ID: 31913537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-responsive RNA mechanical switches.
    Boerneke MA; Hermann T
    RNA Biol; 2015; 12(8):780-6. PubMed ID: 26158858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational identification of protein binding sites on RNAs using high-throughput RNA structure-probing data.
    Hu X; Wong TK; Lu ZJ; Chan TF; Lau TC; Yiu SM; Yip KY
    Bioinformatics; 2014 Apr; 30(8):1049-1055. PubMed ID: 24376038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toehold switches: de-novo-designed regulators of gene expression.
    Green AA; Silver PA; Collins JJ; Yin P
    Cell; 2014 Nov; 159(4):925-39. PubMed ID: 25417166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toehold switch plus signal amplification enables rapid detection.
    Morey K; Thomas-Fenderson T; Watson A; Sebesta J; Peebles C; Gentry-Weeks C
    Biotechnol J; 2023 Dec; 18(12):e2200607. PubMed ID: 37641181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria.
    Ekdahl AM; Rojano-Nisimura AM; Contreras LM
    J Mol Biol; 2022 Sep; 434(18):167689. PubMed ID: 35717997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistrand Structure Prediction of Nucleic Acid Assemblies and Design of RNA Switches.
    Bindewald E; Afonin KA; Viard M; Zakrevsky P; Kim T; Shapiro BA
    Nano Lett; 2016 Mar; 16(3):1726-35. PubMed ID: 26926528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of RNA-Based Translational Repressors.
    Hong S; Park D; Chaudhary S; McCutcheon G; Green AA; Kim J
    Methods Mol Biol; 2022; 2518():49-64. PubMed ID: 35666438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short Activators and Repressors of RNA Toehold Switches.
    McSweeney MA; Zhang Y; Styczynski MP
    ACS Synth Biol; 2023 Mar; 12(3):681-688. PubMed ID: 36802167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Design of RNA Toehold-Mediated Translation Activators.
    Wu K; Yan Z; Green AA
    Methods Mol Biol; 2022; 2518():33-47. PubMed ID: 35666437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Synthetic Toehold Switch for MicroRNA Detection in Mammalian Cells.
    Wang S; Emery NJ; Liu AP
    ACS Synth Biol; 2019 May; 8(5):1079-1088. PubMed ID: 31039307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleic acid strand displacement - from DNA nanotechnology to translational regulation.
    Simmel FC
    RNA Biol; 2023 Jan; 20(1):154-163. PubMed ID: 37095744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of
    Heo T; Kang H; Choi S; Kim J
    Life (Basel); 2021 Nov; 11(11):. PubMed ID: 34833155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toehold switch based biosensors for sensing the highly trafficked rosewood
    Soudier P; Rodriguez Pinzon D; Reif-Trauttmansdorff T; Hijazi H; Cherrière M; Goncalves Pereira C; Blaise D; Pispisa M; Saint-Julien A; Hamlet W; Nguevo M; Gomes E; Belkhelfa S; Niarakis A; Kushwaha M; Grigoras I
    Synth Syst Biotechnol; 2022 Jun; 7(2):791-801. PubMed ID: 35415278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Riboswitch-inspired toehold riboregulators for gene regulation in Escherichia coli.
    Wang T; Simmel FC
    Nucleic Acids Res; 2022 May; 50(8):4784-4798. PubMed ID: 35446427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal Amplification for Cell-Free Biosensors, an Analog-to-Digital Converter.
    Franco RAL; Brenner G; Zocca VFB; de Paiva GB; Lima RN; Rech EL; Amaral DT; Lins MRCR; Pedrolli DB
    ACS Synth Biol; 2023 Oct; 12(10):2819-2826. PubMed ID: 37792474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional Interference in Toehold Switch-Based RNA Circuits.
    Falgenhauer E; Mückl A; Schwarz-Schilling M; Simmel FC
    ACS Synth Biol; 2022 May; 11(5):1735-1745. PubMed ID: 35412304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.