BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 29648603)

  • 1. PHYD prevents secondary dormancy establishment of seeds exposed to high temperature and is associated with lower PIL5 accumulation.
    Martel C; Blair LK; Donohue K
    J Exp Bot; 2018 May; 69(12):3157-3169. PubMed ID: 29648603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5.
    Kim DH; Yamaguchi S; Lim S; Oh E; Park J; Hanada A; Kamiya Y; Choi G
    Plant Cell; 2008 May; 20(5):1260-77. PubMed ID: 18487351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana.
    Chang G; Wang C; Kong X; Chen Q; Yang Y; Hu X
    Biochem Biophys Res Commun; 2018 Jun; 501(1):232-238. PubMed ID: 29723526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA.
    Vaistij FE; Gan Y; Penfield S; Gilday AD; Dave A; He Z; Josse EM; Choi G; Halliday KJ; Graham IA
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10866-71. PubMed ID: 23754415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds.
    Oh E; Yamaguchi S; Hu J; Yusuke J; Jung B; Paik I; Lee HS; Sun TP; Kamiya Y; Choi G
    Plant Cell; 2007 Apr; 19(4):1192-208. PubMed ID: 17449805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. phyB and HY5 are Involved in the Blue Light-Mediated Alleviation of Dormancy of
    Stawska M; Oracz K
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31771191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds.
    Ibarra SE; Tognacca RS; Dave A; Graham IA; Sánchez RA; Botto JF
    Plant Cell Environ; 2016 Jan; 39(1):213-21. PubMed ID: 26177669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Arabidopsis thaliana Seed Dormancy is Associated with Increased Accumulation of the GID1 GA Hormone Receptors.
    Hauvermale AL; Tuttle KM; Takebayashi Y; Seo M; Steber CM
    Plant Cell Physiol; 2015 Sep; 56(9):1773-85. PubMed ID: 26136598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversification of phytochrome contributions to germination as a function of seed-maturation environment.
    Donohue K; Heschel MS; Butler CM; Barua D; Sharrock RA; Whitelam GC; Chiang GCK
    New Phytol; 2008; 177(2):367-379. PubMed ID: 18028293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis.
    Oh E; Kang H; Yamaguchi S; Park J; Lee D; Kamiya Y; Choi G
    Plant Cell; 2009 Feb; 21(2):403-19. PubMed ID: 19244139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy.
    Lee HG; Lee K; Seo PJ
    Plant Mol Biol; 2015 Mar; 87(4-5):371-81. PubMed ID: 25616734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development.
    MacGregor DR; Zhang N; Iwasaki M; Chen M; Dave A; Lopez-Molina L; Penfield S
    Plant J; 2019 Apr; 98(2):277-290. PubMed ID: 30570804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Molecular Signal Integration Network Underpinning Arabidopsis Seed Germination.
    Xu H; Lantzouni O; Bruggink T; Benjamins R; Lanfermeijer F; Denby K; Schwechheimer C; Bassel GW
    Curr Biol; 2020 Oct; 30(19):3703-3712.e4. PubMed ID: 32763174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana.
    Oh E; Kim J; Park E; Kim JI; Kang C; Choi G
    Plant Cell; 2004 Nov; 16(11):3045-58. PubMed ID: 15486102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis.
    Oh E; Yamaguchi S; Kamiya Y; Bae G; Chung WI; Choi G
    Plant J; 2006 Jul; 47(1):124-39. PubMed ID: 16740147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA.
    Ding ZJ; Yan JY; Li GX; Wu ZC; Zhang SQ; Zheng SJ
    Plant J; 2014 Sep; 79(5):810-23. PubMed ID: 24946881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and molecular mechanisms underlying the integration of light and temperature cues in Arabidopsis thaliana seeds.
    Arana MV; Tognacca RS; Estravis-Barcalá M; Sánchez RA; Botto JF
    Plant Cell Environ; 2017 Dec; 40(12):3113-3121. PubMed ID: 28941290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1.
    Gabriele S; Rizza A; Martone J; Circelli P; Costantino P; Vittorioso P
    Plant J; 2010 Jan; 61(2):312-23. PubMed ID: 19874540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dormancy cycling: translation-related transcripts are the main difference between dormant and non-dormant seeds in the field.
    Buijs G; Vogelzang A; Nijveen H; Bentsink L
    Plant J; 2020 Apr; 102(2):327-339. PubMed ID: 31785171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel RGL2-DOF6 Complex Contributes to Primary Seed Dormancy in Arabidopsis thaliana by Regulating a GATA Transcription Factor.
    Ravindran P; Verma V; Stamm P; Kumar PP
    Mol Plant; 2017 Oct; 10(10):1307-1320. PubMed ID: 28917589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.