These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 29648619)
1. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings. Tiiva P; Häikiö E; Kasurinen A Tree Physiol; 2018 Oct; 38(10):1461-1475. PubMed ID: 29648619 [TBL] [Abstract][Full Text] [Related]
2. Responses of soil-grown Scots pine seedlings to experimental warming, moderate nitrogen addition and bark herbivory in a three-year field experiment. Rasheed MU; Julkunen-Tiitto R; Kivimäenpää M; Riikonen J; Kasurinen A Sci Total Environ; 2020 Sep; 733():139110. PubMed ID: 32447078 [TBL] [Abstract][Full Text] [Related]
3. Methyl Jasmonate-Induced Monoterpenes in Scots Pine and Norway Spruce Tissues Affect Pine Weevil Orientation. Lundborg L; Nordlander G; Björklund N; Nordenhem H; Borg-Karlson AK J Chem Ecol; 2016 Dec; 42(12):1237-1246. PubMed ID: 27896555 [TBL] [Abstract][Full Text] [Related]
4. Activation of defence pathways in Scots pine bark after feeding by pine weevil (Hylobius abietis). Kovalchuk A; Raffaello T; Jaber E; Keriö S; Ghimire R; Lorenz WW; Dean JF; Holopainen JK; Asiegbu FO BMC Genomics; 2015 May; 16(1):352. PubMed ID: 25943104 [TBL] [Abstract][Full Text] [Related]
5. Responses in growth and emissions of biogenic volatile organic compounds in Scots pine, Norway spruce and silver birch seedlings to different warming treatments in a controlled field experiment. Pikkarainen L; Nissinen K; Ghimire RP; Kivimäenpää M; Ikonen VP; Kilpeläinen A; Virjamo V; Yu H; Kirsikka-Aho S; Salminen T; Hirvonen J; Vahimaa T; Luoranen J; Peltola H Sci Total Environ; 2022 May; 821():153277. PubMed ID: 35074390 [TBL] [Abstract][Full Text] [Related]
6. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests. Yu H; Holopainen JK; Kivimäenpää M; Virtanen A; Blande JD Molecules; 2021 Apr; 26(8):. PubMed ID: 33920862 [TBL] [Abstract][Full Text] [Related]
7. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Bansal S; Hallsby G; Löfvenius MO; Nilsson MC Tree Physiol; 2013 May; 33(5):451-63. PubMed ID: 23525156 [TBL] [Abstract][Full Text] [Related]
8. Biogenic volatile organic compound emissions from Pinus massoniana and Schima superba seedlings: Their responses to foliar and soil application of nitrogen. Huang X; Lai J; Liu Y; Zheng L; Fang X; Song W; Yi Z Sci Total Environ; 2020 Feb; 705():135761. PubMed ID: 31972929 [TBL] [Abstract][Full Text] [Related]
9. Contrasting responses of silver birch VOC emissions to short- and long-term herbivory. Maja MM; Kasurinen A; Yli-Pirilä P; Joutsensaari J; Klemola T; Holopainen T; Holopainen JK Tree Physiol; 2014 Mar; 34(3):241-52. PubMed ID: 24627262 [TBL] [Abstract][Full Text] [Related]
10. Needle removal by pine sawfly larvae increases branch-level VOC emissions and reduces below-ground emissions of Scots pine. Ghimire RP; Markkanen JM; Kivimäenpää M; Lyytikäinen-Saarenmaa P; Holopainen JK Environ Sci Technol; 2013 May; 47(9):4325-32. PubMed ID: 23586621 [TBL] [Abstract][Full Text] [Related]
11. Diurnal variation in BVOC emission and CO Yu H; Blande JD Environ Pollut; 2021 Jun; 278():116830. PubMed ID: 33725535 [TBL] [Abstract][Full Text] [Related]
12. The role of below-ground competition during early stages of secondary succession: the case of 3-year-old Scots pine (Pinus sylvestris L.) seedlings in an abandoned grassland. Picon-Cochard C; Coll L; Balandier P Oecologia; 2006 Jun; 148(3):373-83. PubMed ID: 16489460 [TBL] [Abstract][Full Text] [Related]
13. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest. Eller AS; Young LL; Trowbridge AM; Monson RK Oecologia; 2016 Feb; 180(2):345-58. PubMed ID: 26515962 [TBL] [Abstract][Full Text] [Related]
14. Biogenic secondary organic aerosol participates in plant interactions and herbivory defense. Yu H; Buchholz A; Pullinen I; Saarela S; Li Z; Virtanen A; Blande JD Science; 2024 Sep; 385(6714):1225-1230. PubMed ID: 39265014 [TBL] [Abstract][Full Text] [Related]
15. Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply. Gruffman L; Palmroth S; Näsholm T Tree Physiol; 2013 Jun; 33(6):590-600. PubMed ID: 23824240 [TBL] [Abstract][Full Text] [Related]
16. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Domisch T; Finér L; Lehto T Tree Physiol; 2001 May; 21(7):465-72. PubMed ID: 11340047 [TBL] [Abstract][Full Text] [Related]
17. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223 [TBL] [Abstract][Full Text] [Related]
18. Induced defenses change the chemical composition of pine seedlings and influence meal properties of the pine weevil Hylobius abietis. Lundborg L; Fedderwitz F; Björklund N; Nordlander G; Borg-Karlson AK Phytochemistry; 2016 Oct; 130():99-105. PubMed ID: 27417987 [TBL] [Abstract][Full Text] [Related]
19. Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming. Schollert M; Kivimäenpää M; Michelsen A; Blok D; Rinnan R Ann Bot; 2017 Feb; 119(3):433-445. PubMed ID: 28064192 [TBL] [Abstract][Full Text] [Related]
20. Early growth of Scots pine seedlings is affected by seed origin and light quality. Alakärppä E; Taulavuori E; Valledor L; Marttila T; Jokipii-Lukkari S; Karppinen K; Nguyen N; Taulavuori K; Häggman H J Plant Physiol; 2019 Jun; 237():120-128. PubMed ID: 31078909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]