These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 29648777)

  • 1. Applications of Light-Responsive Systems for Cancer Theranostics.
    Chen H; Zhao Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21021-21034. PubMed ID: 29648777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography.
    Feng Q; Zhang Y; Zhang W; Shan X; Yuan Y; Zhang H; Hou L; Zhang Z
    Acta Biomater; 2016 Jul; 38():129-42. PubMed ID: 27090593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoactivated drug delivery and bioimaging.
    Yang Y; Mu J; Xing B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Mar; 9(2):. PubMed ID: 27094696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared light-responsive nanomaterials for cancer theranostics.
    Kim H; Chung K; Lee S; Kim DH; Lee H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(1):23-45. PubMed ID: 25903643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances of Light-Mediated Theranostics.
    Ai X; Mu J; Xing B
    Theranostics; 2016; 6(13):2439-2457. PubMed ID: 27877246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple Hit with Drug Carriers: pH- and Temperature-Responsive Theranostics for Multimodal Chemo- and Photothermal Therapy and Diagnostic Applications.
    Baek S; Singh RK; Kim TH; Seo JW; Shin US; Chrzanowski W; Kim HW
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):8967-79. PubMed ID: 26926826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer.
    Yue X; Zhang Q; Dai Z
    Adv Drug Deliv Rev; 2017 Jun; 115():155-170. PubMed ID: 28455188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy.
    Wang X; Xuan Z; Zhu X; Sun H; Li J; Xie Z
    J Nanobiotechnology; 2020 Aug; 18(1):108. PubMed ID: 32746846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Functionalization of the NIR-Responsive Photothermal Semiconductor Nanomaterials for Cancer Theranostics.
    Huang X; Zhang W; Guan G; Song G; Zou R; Hu J
    Acc Chem Res; 2017 Oct; 50(10):2529-2538. PubMed ID: 28972736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor.
    Shen S; Ding B; Zhang S; Qi X; Wang K; Tian J; Yan Y; Ge Y; Wu L
    Nanomedicine; 2017 Jul; 13(5):1607-1616. PubMed ID: 28285157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy.
    Li Y; Liu G; Ma J; Lin J; Lin H; Su G; Chen D; Ye S; Chen X; Zhu X; Hou Z
    J Control Release; 2017 Jul; 258():95-107. PubMed ID: 28501673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy.
    Feng Q; Zhang Y; Zhang W; Hao Y; Wang Y; Zhang H; Hou L; Zhang Z
    Acta Biomater; 2017 Feb; 49():402-413. PubMed ID: 27890732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy.
    Lyu Y; Fang Y; Miao Q; Zhen X; Ding D; Pu K
    ACS Nano; 2016 Apr; 10(4):4472-81. PubMed ID: 26959505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional Rbx WO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging.
    Tian G; Zhang X; Zheng X; Yin W; Ruan L; Liu X; Zhou L; Yan L; Li S; Gu Z; Zhao Y
    Small; 2014 Oct; 10(20):4160-70. PubMed ID: 24979184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy.
    Liang X; Fang L; Li X; Zhang X; Wang F
    Biomaterials; 2017 Jul; 132():72-84. PubMed ID: 28411450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered Hybrid Nanoparticles for On-Demand Diagnostics and Therapeutics.
    Nguyen KT; Zhao Y
    Acc Chem Res; 2015 Dec; 48(12):3016-25. PubMed ID: 26605438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart MoS2/Fe3O4 Nanotheranostic for Magnetically Targeted Photothermal Therapy Guided by Magnetic Resonance/Photoacoustic Imaging.
    Yu J; Yin W; Zheng X; Tian G; Zhang X; Bao T; Dong X; Wang Z; Gu Z; Ma X; Zhao Y
    Theranostics; 2015; 5(9):931-45. PubMed ID: 26155310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications.
    Thangudu S; Kaur N; Korupalli C; Sharma V; Kalluru P; Vankayala R
    Biomater Sci; 2021 Aug; 9(16):5472-5483. PubMed ID: 34269365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform.
    Hou L; Shan X; Hao L; Feng Q; Zhang Z
    Acta Biomater; 2017 May; 54():307-320. PubMed ID: 28274767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.