BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29648787)

  • 21. Novel fluorescent phosphonic acid esters for discrimination of lipases and esterases.
    Schmidinger H; Birner-Gruenberger R; Riesenhuber G; Saf R; Susani-Etzerodt H; Hermetter A
    Chembiochem; 2005 Oct; 6(10):1776-81. PubMed ID: 16094692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Profiling Esterases in Mycobacterium tuberculosis Using Far-Red Fluorogenic Substrates.
    Tallman KR; Levine SR; Beatty KE
    ACS Chem Biol; 2016 Jul; 11(7):1810-5. PubMed ID: 27177211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays.
    Gosalia DN; Salisbury CM; Ellman JA; Diamond SL
    Mol Cell Proteomics; 2005 May; 4(5):626-36. PubMed ID: 15705970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide microarrays for the determination of protease substrate specificity.
    Salisbury CM; Maly DJ; Ellman JA
    J Am Chem Soc; 2002 Dec; 124(50):14868-70. PubMed ID: 12475327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of mycobacterial phospholipase A: an activity associated with mycobacterial cutinase.
    Parker SK; Curtin KM; Vasil ML
    J Bacteriol; 2007 Jun; 189(11):4153-60. PubMed ID: 17416658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances and concepts in substrate specificity determination of proteases using tailored libraries of fluorogenic substrates with unnatural amino acids.
    Rut W; Kasperkiewicz P; Byzia A; Poreba M; Groborz K; Drag M
    Biol Chem; 2015 Apr; 396(4):329-37. PubMed ID: 25719315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decoupled roles for the atypical, bifurcated binding pocket of the ybfF hydrolase.
    Ellis EE; Adkins CT; Galovska NM; Lavis LD; Johnson RJ
    Chembiochem; 2013 Jun; 14(9):1134-44. PubMed ID: 23670977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the substrate specificity of tripeptidyl-peptidase I using combinatorial peptide libraries and development of improved fluorogenic substrates.
    Tian Y; Sohar I; Taylor JW; Lobel P
    J Biol Chem; 2006 Mar; 281(10):6559-72. PubMed ID: 16339154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Late-Stage Conversion of Diphenylphosphonate to Fluorophosphonate Probes for the Investigation of Serine Hydrolases.
    d'Andrea FB; Townsend CA
    Cell Chem Biol; 2019 Jun; 26(6):878-884.e8. PubMed ID: 30982751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative analysis of the human serine hydrolase OVCA2 to the model serine hydrolase homolog FSH1 from S. cerevisiae.
    Bun JS; Slack MD; Schemenauer DE; Johnson RJ
    PLoS One; 2020; 15(3):e0230166. PubMed ID: 32182256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxoplasma gondii serine hydrolases regulate parasite lipid mobilization during growth and replication within the host.
    Onguka O; Babin BM; Lakemeyer M; Foe IT; Amara N; Terrell SM; Lum KM; Cieplak P; Niphakis MJ; Long JZ; Bogyo M
    Cell Chem Biol; 2021 Oct; 28(10):1501-1513.e5. PubMed ID: 34043961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substrate specificity and inhibitory study of human airway trypsin-like protease.
    Wysocka M; Spichalska B; Lesner A; Jaros M; Brzozowski K; Łegowska A; Rolka K
    Bioorg Med Chem; 2010 Aug; 18(15):5504-9. PubMed ID: 20620066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG.
    Chahinian H; Nini L; Boitard E; Dubès JP; Comeau LC; Sarda L
    Lipids; 2002 Jul; 37(7):653-62. PubMed ID: 12216836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The proprotein convertase SKI-1/S1P. In vitro analysis of Lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors.
    Pasquato A; Pullikotil P; Asselin MC; Vacatello M; Paolillo L; Ghezzo F; Basso F; Di Bello C; Dettin M; Seidah NG
    J Biol Chem; 2006 Aug; 281(33):23471-81. PubMed ID: 16790437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activity profiling of aminopeptidases in cell lysates using a fluorogenic substrate library.
    Byzia A; Szeffler A; Kalinowski L; Drag M
    Biochimie; 2016 Mar; 122():31-7. PubMed ID: 26449746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Profiling serine hydrolase activities in complex proteomes.
    Kidd D; Liu Y; Cravatt BF
    Biochemistry; 2001 Apr; 40(13):4005-15. PubMed ID: 11300781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New fluorogenic substrates for the study of secondary specificity of prolyl oligopeptidase.
    Noula C; Kokotos G; Barth T; Tzougraki C
    J Pept Res; 1997 Jan; 49(1):46-51. PubMed ID: 9128099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorogenic ester substrates to assess proteolytic activity.
    Mugherli L; Burchak ON; Chatelain F; Balakirev MY
    Bioorg Med Chem Lett; 2006 Sep; 16(17):4488-91. PubMed ID: 16806926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and evaluation of a selective fluorogenic Pup derived assay reagent for Dop, a potential drug target in Mycobacterium tuberculosis.
    Merkx R; Burns KE; Slobbe P; El Oualid F; El Atmioui D; Darwin KH; Ovaa H
    Chembiochem; 2012 Sep; 13(14):2056-60. PubMed ID: 22927162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate specificity of human matriptase-2.
    Wysocka M; Gruba N; Miecznikowska A; Popow-Stellmaszyk J; Gütschow M; Stirnberg M; Furtmann N; Bajorath J; Lesner A; Rolka K
    Biochimie; 2014 Feb; 97():121-7. PubMed ID: 24161741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.