These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29648787)

  • 41. Substrate specificity of human matriptase-2.
    Wysocka M; Gruba N; Miecznikowska A; Popow-Stellmaszyk J; Gütschow M; Stirnberg M; Furtmann N; Bajorath J; Lesner A; Rolka K
    Biochimie; 2014 Feb; 97():121-7. PubMed ID: 24161741
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sulfatase-activated fluorophores for rapid discrimination of mycobacterial species and strains.
    Beatty KE; Williams M; Carlson BL; Swarts BM; Warren RM; van Helden PD; Bertozzi CR
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12911-6. PubMed ID: 23878250
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uncovering the Serine Hydrolytic Landscape of Mycobacterium tuberculosis.
    Boshoff HI
    Cell Chem Biol; 2016 Feb; 23(2):209-211. PubMed ID: 26971871
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A high-throughput, low-volume enzyme assay on solid support.
    Babiak P; Reymond JL
    Anal Chem; 2005 Jan; 77(2):373-7. PubMed ID: 15649030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of sensitive cathepsin G fluorogenic substrate using combinatorial chemistry methods.
    Lesner A; Wysocka M; Guzow K; Wiczk W; Legowska A; Rolka K
    Anal Biochem; 2008 Apr; 375(2):306-12. PubMed ID: 18261971
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular basis of perhydrolase activity in serine hydrolases.
    Bernhardt P; Hult K; Kazlauskas RJ
    Angew Chem Int Ed Engl; 2005 Apr; 44(18):2742-2746. PubMed ID: 15803517
    [No Abstract]   [Full Text] [Related]  

  • 47. Enzyme fingerprints of activity, and stereo- and enantioselectivity from fluorogenic and chromogenic substrate arrays.
    Wahler D; Badalassi F; Crotti P; Reymond JL
    Chemistry; 2002 Jul; 8(14):3211-28. PubMed ID: 12203351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of a kinin inactivating serine endopeptidase H2 (kininase) from human urine using fluorogenic substrates.
    Quinto BM; Juliano L; Juliano M; Carmona AK; Stella RC; Casarini DE
    Immunopharmacology; 1999 Dec; 45(1-3):223-8. PubMed ID: 10615015
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro elucidation of substrate specificity and bioassay of proprotein convertase 4 using intramolecularly quenched fluorogenic peptides.
    Basak S; Chrétien M; Mbikay M; Basak A
    Biochem J; 2004 Jun; 380(Pt 2):505-14. PubMed ID: 14972029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aminonaphthalenesulfonamides, a new class of modifiable fluorescent detecting groups and their use in substrates for serine protease enzymes.
    Butenas S; Orfeo T; Lawson JH; Mann KG
    Biochemistry; 1992 Jun; 31(23):5399-411. PubMed ID: 1606166
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthetic Fluorogenic Peptides Reveal Dynamic Substrate Specificity of Depalmitoylases.
    Amara N; Foe IT; Onguka O; Garland M; Bogyo M
    Cell Chem Biol; 2019 Jan; 26(1):35-47.e7. PubMed ID: 30393067
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast.
    Baxter SM; Rosenblum JS; Knutson S; Nelson MR; Montimurro JS; Di Gennaro JA; Speir JA; Burbaum JJ; Fetrow JS
    Mol Cell Proteomics; 2004 Mar; 3(3):209-25. PubMed ID: 14645503
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MetA (Rv3341) from Mycobacterium tuberculosis H37Rv strain exhibits substrate dependent dual role of transferase and hydrolase activity.
    Maurya B; Pochet L; Wouters J; Colaço M; Misquith S
    Biochimie; 2020 Dec; 179():113-126. PubMed ID: 32976971
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid identification of substrates for novel proteases using a combinatorial peptide library.
    Rossé G; Kueng E; Page MG; Schauer-Vukasinovic V; Giller T; Lahm HW; Hunziker P; Schlatter D
    J Comb Chem; 2000; 2(5):461-6. PubMed ID: 11029171
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Selective neurotensin-derived internally quenched fluorogenic substrates for neurolysin (EC 3.4.24.16): comparison with thimet oligopeptidase (EC 3.4.24.15) and neprilysin (EC 3.4.24.11).
    Oliveira V; Campos M; Hemerly JP; Ferro ES; Camargo AC; Juliano MA; Juliano L
    Anal Biochem; 2001 May; 292(2):257-65. PubMed ID: 11355859
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rational design, synthesis and biological evaluation of modular fluorogenic substrates with high affinity and selectivity for PTP1B.
    Sanchini S; Perruccio F; Piizzi G
    Chembiochem; 2014 May; 15(7):961-76. PubMed ID: 24719298
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enzymatic analysis of recombinant Japanese encephalitis virus NS2B(H)-NS3pro protease with fluorogenic model peptide substrates.
    Junaid M; Chalayut C; Sehgelmeble Torrejon A; Angsuthanasombat C; Shutava I; Lapins M; Wikberg JE; Katzenmeier G
    PLoS One; 2012; 7(5):e36872. PubMed ID: 22615830
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases.
    Faucher F; Bennett JM; Bogyo M; Lovell S
    Cell Chem Biol; 2020 Aug; 27(8):937-952. PubMed ID: 32726586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Substrate specificity of recombinant dengue 2 virus NS2B-NS3 protease: influence of natural and unnatural basic amino acids on hydrolysis of synthetic fluorescent substrates.
    Gouvea IE; Izidoro MA; Judice WA; Cezari MH; Caliendo G; Santagada V; dos Santos CN; Queiroz MH; Juliano MA; Young PR; Fairlie DP; Juliano L
    Arch Biochem Biophys; 2007 Jan; 457(2):187-96. PubMed ID: 17184724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of alpha-cyanoesters as fluorescent substrates for examining interindividual variation in general and pyrethroid-selective esterases in human liver microsomes.
    Wheelock CE; Wheelock AM; Zhang R; Stok JE; Morisseau C; Le Valley SE; Green CE; Hammock BD
    Anal Biochem; 2003 Apr; 315(2):208-22. PubMed ID: 12689831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.