BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 29649003)

  • 1. Somatic mutation of the cohesin complex subunit confers therapeutic vulnerabilities in cancer.
    Liu Y; Xu H; Van der Jeught K; Li Y; Liu S; Zhang L; Fang Y; Zhang X; Radovich M; Schneider BP; He X; Huang C; Zhang C; Wan J; Ji G; Lu X
    J Clin Invest; 2018 Jul; 128(7):2951-2965. PubMed ID: 29649003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct functions of human cohesin-SA1 and cohesin-SA2 in double-strand break repair.
    Kong X; Ball AR; Pham HX; Zeng W; Chen HY; Schmiesing JA; Kim JS; Berns M; Yokomori K
    Mol Cell Biol; 2014 Feb; 34(4):685-98. PubMed ID: 24324008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the interaction between the cohesin subunits Rad21 and SA1/2.
    Zhang N; Jiang Y; Mao Q; Demeler B; Tao YJ; Pati D
    PLoS One; 2013; 8(7):e69458. PubMed ID: 23874961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers.
    Mondal G; Stevers M; Goode B; Ashworth A; Solomon DA
    Nat Commun; 2019 Apr; 10(1):1686. PubMed ID: 30975996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML.
    Tothova Z; Valton AL; Gorelov RA; Vallurupalli M; Krill-Burger JM; Holmes A; Landers CC; Haydu JE; Malolepsza E; Hartigan C; Donahue M; Popova KD; Koochaki S; Venev SV; Rivera J; Chen E; Lage K; Schenone M; D'Andrea AD; Carr SA; Morgan EA; Dekker J; Ebert BL
    JCI Insight; 2021 Feb; 6(3):. PubMed ID: 33351783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression of Transcription at DNA Breaks Requires Cohesin throughout Interphase and Prevents Genome Instability.
    Meisenberg C; Pinder SI; Hopkins SR; Wooller SK; Benstead-Hume G; Pearl FMG; Jeggo PA; Downs JA
    Mol Cell; 2019 Jan; 73(2):212-223.e7. PubMed ID: 30554942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic lethality and cancer: cohesin and PARP at the replication fork.
    O'Neil NJ; van Pel DM; Hieter P
    Trends Genet; 2013 May; 29(5):290-7. PubMed ID: 23333522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells.
    Canudas S; Smith S
    J Cell Biol; 2009 Oct; 187(2):165-73. PubMed ID: 19822671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition.
    Bailey ML; O'Neil NJ; van Pel DM; Solomon DA; Waldman T; Hieter P
    Mol Cancer Ther; 2014 Mar; 13(3):724-32. PubMed ID: 24356817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining PARP-1 inhibition and radiation in Ewing sarcoma results in lethal DNA damage.
    Lee HJ; Yoon C; Schmidt B; Park DJ; Zhang AY; Erkizan HV; Toretsky JA; Kirsch DG; Yoon SS
    Mol Cancer Ther; 2013 Nov; 12(11):2591-600. PubMed ID: 23966622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic lethality between the cohesin subunits
    van der Lelij P; Lieb S; Jude J; Wutz G; Santos CP; Falkenberg K; Schlattl A; Ban J; Schwentner R; Hoffmann T; Kovar H; Real FX; Waldman T; Pearson MA; Kraut N; Peters JM; Zuber J; Petronczki M
    Elife; 2017 Jul; 6():. PubMed ID: 28691904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-targeting poly(ADP-ribose) polymerase (PARP) and histone deacetylase (HDAC) in triple-negative breast cancer: Higher synergism in BRCA mutated cells.
    Marijon H; Lee DH; Ding L; Sun H; Gery S; de Gramont A; Koeffler HP
    Biomed Pharmacother; 2018 Mar; 99():543-551. PubMed ID: 29902865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cohesin mutations in human cancer.
    Hill VK; Kim JS; Waldman T
    Biochim Biophys Acta; 2016 Aug; 1866(1):1-11. PubMed ID: 27207471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear import and export signals of human cohesins SA1/STAG1 and SA2/STAG2 expressed in Saccharomyces cerevisiae.
    Tarnowski LJ; Kowalec P; Milewski M; Jurek M; Plochocka D; Fronk J; Kurlandzka A
    PLoS One; 2012; 7(6):e38740. PubMed ID: 22715410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STAG2 Regulates Homologous Recombination Repair and Sensitivity to ATM Inhibition.
    Zhou J; Nie RC; He ZP; Cai XX; Chen JW; Lin WP; Yin YX; Xiang ZC; Zhu TC; Xie JJ; Zhang YC; Wang X; Lin P; Xie D; D'Andrea AD; Cai MY
    Adv Sci (Weinh); 2023 Dec; 10(36):e2302494. PubMed ID: 37985839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cohesin SA1 and SA2 are RNA binding proteins that localize to RNA containing regions on DNA.
    Pan H; Jin M; Ghadiyaram A; Kaur P; Miller HE; Ta HM; Liu M; Fan Y; Mahn C; Gorthi A; You C; Piehler J; Riehn R; Bishop AJR; Tao YJ; Wang H
    Nucleic Acids Res; 2020 Jun; 48(10):5639-5655. PubMed ID: 32352519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SA1/SA2 cohesion proteins and SIRT1-NAD+ deacetylase modulate telomere homeostasis in cumulus cells and are eligible biomarkers of ovarian aging.
    Valerio D; Luddi A; De Leo V; Labella D; Longobardi S; Piomboni P
    Hum Reprod; 2018 May; 33(5):887-894. PubMed ID: 29481647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAD54B mutations enhance the sensitivity of ovarian cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors.
    Liu P; Lin C; Liu L; Lu Z; Tu Z; Liu H
    J Biol Chem; 2022 Sep; 298(9):102354. PubMed ID: 35952757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers.
    van der Lelij P; Newman JA; Lieb S; Jude J; Katis V; Hoffmann T; Hinterndorfer M; Bader G; Kraut N; Pearson MA; Peters JM; Zuber J; Gileadi O; Petronczki M
    Life Sci Alliance; 2020 Jul; 3(7):. PubMed ID: 32467316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PARP-1 inhibition with or without ionizing radiation confers reactive oxygen species-mediated cytotoxicity preferentially to cancer cells with mutant TP53.
    Liu Q; Gheorghiu L; Drumm M; Clayman R; Eidelman A; Wszolek MF; Olumi A; Feldman A; Wang M; Marcar L; Citrin DE; Wu CL; Benes CH; Efstathiou JA; Willers H
    Oncogene; 2018 May; 37(21):2793-2805. PubMed ID: 29511347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.