These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 29649169)
1. Development and Characterization of Novel Genic-SSR Markers in Apple-Juniper Rust Pathogen Gymnosporangium yamadae (Pucciniales: Pucciniaceae) Using Next-Generation Sequencing. Tao SQ; Cao B; Tian CM; Liang YM Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29649169 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome Analysis of Apple Leaves Infected by the Rust Fungus Tao SQ; Auer L; Morin E; Liang YM; Duplessis S Mol Plant Microbe Interact; 2020 Mar; 33(3):444-461. PubMed ID: 31765287 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum). Tao SQ; Cao B; Tian CM; Liang YM BMC Genomics; 2017 Aug; 18(1):651. PubMed ID: 28830353 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptomics of Gymnosporangium spp. teliospores reveals a conserved genetic program at this specific stage of the rust fungal life cycle. Tao SQ; Cao B; Morin E; Liang YM; Duplessis S BMC Genomics; 2019 Oct; 20(1):723. PubMed ID: 31597570 [TBL] [Abstract][Full Text] [Related]
5. First Report of the Telial Stage of Japanese Apple Rust on Juniperus chinensis in North America and the Aecial Stage on Malus domestica. Gregory NF; Bischoff JF; Dixon LJ; Ciurlino R Plant Dis; 2010 Sep; 94(9):1169. PubMed ID: 30743712 [TBL] [Abstract][Full Text] [Related]
6. First Report of Japanese Apple Rust Caused by Gymnosporangium yamadae on Malus spp. in North America. Yun HY; Minnis AM; Rossman AY Plant Dis; 2009 Apr; 93(4):430. PubMed ID: 30764234 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptome analysis of juniper branches infected by Gymnosporangium spp. highlights their different infection strategies associated with cytokinins. Shao C; Tao S; Liang Y BMC Genomics; 2023 Apr; 24(1):173. PubMed ID: 37020280 [TBL] [Abstract][Full Text] [Related]
8. The MpNAC72/MpERF105-MpMYB10b module regulates anthocyanin biosynthesis in Malus 'Profusion' leaves infected with Gymnosporangium yamadae. Wang Y; An H; Yang Y; Yi C; Duan Y; Wang Q; Guo Y; Yao L; Chen M; Meng J; Wei J; Hu C; Li H Plant J; 2024 Jun; 118(5):1569-1588. PubMed ID: 38412288 [TBL] [Abstract][Full Text] [Related]
10. First Report of Emanuel IB; Ralston TI; Chatfield J; Draper E; Veil J; Peduto Hand F Plant Dis; 2021 Mar; ():. PubMed ID: 33728964 [TBL] [Abstract][Full Text] [Related]
11. Elucidating genetic variability and population structure in Venturia inaequalis associated with apple scab diseaseusing SSR markers. Mansoor S; Ahmed N; Sharma V; Jan S; Nabi SU; Mir JI; Mir MA; Masoodi KZ PLoS One; 2019; 14(11):e0224300. PubMed ID: 31693681 [TBL] [Abstract][Full Text] [Related]
12. Development and Characterization of Novel Microsatellite Markers for the Peach Fruit Moth Carposina sasakii (Lepidoptera: Carposinidae) Using Next-Generation Sequencing. Wang YZ; Cao LJ; Zhu JY; Wei SJ Int J Mol Sci; 2016 Mar; 17(3):362. PubMed ID: 26999103 [TBL] [Abstract][Full Text] [Related]
13. [Comparative transcriptomic analysis of the haustoria of Weng H; Liu X; Tao S; Liang Y Sheng Wu Gong Cheng Xue Bao; 2022 Oct; 38(10):3825-3843. PubMed ID: 36305412 [TBL] [Abstract][Full Text] [Related]
14. Genetic differentiation of Puccinia triticina populations in the Middle East and genetic similarity with populations in Central Asia. Kolmer JA; Ordoñez ME; Manisterski J; Anikster Y Phytopathology; 2011 Jul; 101(7):870-7. PubMed ID: 21303212 [TBL] [Abstract][Full Text] [Related]
15. Anthocyanins from Wang Y; An H; Guo YN; Wang Q; Shang YY; Chen MK; Liu YX; Meng JX; Zhang SY; Wei J; Li HH Front Microbiol; 2023; 14():1152050. PubMed ID: 37206329 [No Abstract] [Full Text] [Related]
16. Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants. Zhao P; Liu F; Li YM; Cai L Sci Rep; 2016 Jul; 6():29339. PubMed ID: 27385413 [TBL] [Abstract][Full Text] [Related]
17. Development and characterization of genic-SSR markers from different Asia lotus (Nelumbo nucifera) types by RNA-seq. Zheng XF; You YN; Diao Y; Zheng XW; Xie KQ; Zhou MQ; Hu ZL; Wang YW Genet Mol Res; 2015 Sep; 14(3):11171-84. PubMed ID: 26400348 [TBL] [Abstract][Full Text] [Related]
18. Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stem rust fungus Puccinia graminis f. sp. tritici. Zhong S; Leng Y; Friesen TL; Faris JD; Szabo LJ Phytopathology; 2009 Mar; 99(3):282-9. PubMed ID: 19203281 [TBL] [Abstract][Full Text] [Related]
19. Development of microsatellite markers using next-generation sequencing for the columnar cactus Echinopsis chiloensis (Cactaceae). Ossa CG; Larridon I; Peralta G; Asselman P; Pérez F Mol Biol Rep; 2016 Dec; 43(12):1315-1320. PubMed ID: 27631640 [TBL] [Abstract][Full Text] [Related]
20. Effects of Temperature, Moisture, and Ultraviolet Light on Germination, Infection, and Survival of Zhang LJ; Li SZ; Li YD; Li BH; Liu N; Ren WC; Lian S; Dong XL Plant Dis; 2023 Dec; 107(12):3825-3835. PubMed ID: 37337445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]