These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29649169)

  • 41. Development of soybean aphid genomic SSR markers using next generation sequencing.
    Jun TH; Michel AP; Mian MA
    Genome; 2011 May; 54(5):360-7. PubMed ID: 21529140
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen.
    Yu G; Zhang Q; Friesen TL; Rouse MN; Jin Y; Zhong S; Rasmussen JB; Lagudah ES; Xu SS
    Theor Appl Genet; 2015 Mar; 128(3):431-43. PubMed ID: 25523501
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of microsatellite markers using next-generation sequencing for the fish Colossoma macropomum.
    Ariede RB; Freitas MV; Hata ME; Matrochirico-Filho VA; Utsunomia R; Mendonça FF; Foresti F; Porto-Foresti F; Hashimoto DT
    Mol Biol Rep; 2018 Feb; 45(1):9-18. PubMed ID: 29264733
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptome analysis of the white pine blister rust pathogen Cronartium ribicola: de novo assembly, expression profiling, and identification of candidate effectors.
    Liu JJ; Sturrock RN; Sniezko RA; Williams H; Benton R; Zamany A
    BMC Genomics; 2015 Sep; 16(1):678. PubMed ID: 26338692
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Newly developed SSR markers reveal genetic diversity and geographical clustering in spinach (Spinacia oleracea).
    Göl Ş; Göktay M; Allmer J; Doğanlar S; Frary A
    Mol Genet Genomics; 2017 Aug; 292(4):847-855. PubMed ID: 28386640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of 49 novel microsatellite markers from Next-generation sequencing data and a robust method for parentage tests in the emu (Dromaius novaehollandiae).
    Koshiishi Y; Uchiyama H; Murata-Okubo M; Tanaka K; Kameyama Y; Hirayama H; Wada K
    Gene; 2021 Feb; 769():145238. PubMed ID: 33068676
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Virulence and Molecular Characterization of Experimental Isolates of the Stripe Rust Pathogen (Puccinia striiformis) Indicate Somatic Recombination.
    Lei Y; Wang M; Wan A; Xia C; See DR; Zhang M; Chen X
    Phytopathology; 2017 Mar; 107(3):329-344. PubMed ID: 27775498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-Throughput Development of SSR Markers from Pea (Pisum sativum L.) Based on Next Generation Sequencing of a Purified Chinese Commercial Variety.
    Yang T; Fang L; Zhang X; Hu J; Bao S; Hao J; Li L; He Y; Jiang J; Wang F; Tian S; Zong X
    PLoS One; 2015; 10(10):e0139775. PubMed ID: 26440522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of Seven Microsatellite Markers Using Next Generation Sequencing for the Conservation on the Korean Population of Dorcus hopei (E. Saunders, 1854) (Coleoptera, Lucanidae).
    Kang TH; Han SH; Park SJ
    Int J Mol Sci; 2015 Sep; 16(9):21330-41. PubMed ID: 26370965
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of ten microsatellite markers from the keystone mistletoe Tristerix corymbosus (Loranthaceae) using 454 next generation sequencing and their applicability to population genetic structure studies.
    Fontúrbel FE; Murúa MM; Vega-Retter C
    Mol Biol Rep; 2016 May; 43(5):339-43. PubMed ID: 26944282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid development of polymorphic microsatellite markers for the Amur sturgeon (Acipenser schrenckii) using next-generation sequencing technology.
    Li LM; Wei L; Jiang HY; Zhang Y; Zhang XJ; Yuan LH; Chen JP
    Genet Mol Res; 2015 Jul; 14(3):7910-3. PubMed ID: 26214471
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of polymorphic microsatellites for Sillago sihama based on next-generation sequencing and transferability to Sillago japonica.
    Wu RX; Zhang HR; Niu SF; Zhai Y; Liu XF
    Genet Mol Res; 2016 Nov; 15(4):. PubMed ID: 27886349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Rvi15 (Vr2) apple scab resistance locus contains three TIR-NBS-LRR genes.
    Galli P; Patocchi A; Broggini GA; Gessler C
    Mol Plant Microbe Interact; 2010 May; 23(5):608-17. PubMed ID: 20367469
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species.
    Ziya Motalebipour E; Kafkas S; Khodaeiaminjan M; Çoban N; Gözel H
    BMC Genomics; 2016 Dec; 17(1):998. PubMed ID: 27923352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers.
    Chen H; Wang L; Wang S; Liu C; Blair MW; Cheng X
    PLoS One; 2015; 10(4):e0120273. PubMed ID: 25830701
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tagging and mapping of SSR marker for rust resistance gene in lentil (Lens culinaris Medikus subsp. culinaris).
    Dikshit HK; Singh A; Singh D; Aski M; Jain N; Hegde VS; Basandrai AK; Basandrai D; Sharma TR
    Indian J Exp Biol; 2016 Jun; 54(6):394-9. PubMed ID: 27468466
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of Genome-Wide SSR Markers from Angelica gigas Nakai Using Next Generation Sequencing.
    Gil J; Um Y; Kim S; Kim OT; Koo SC; Reddy CS; Kim SC; Hong CP; Park SG; Kim HB; Lee DH; Jeong BH; Chung JW; Lee Y
    Genes (Basel); 2017 Sep; 8(10):. PubMed ID: 28934115
    [No Abstract]   [Full Text] [Related]  

  • 58. Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions.
    Muleta KT; Rouse MN; Rynearson S; Chen X; Buta BG; Pumphrey MO
    BMC Plant Biol; 2017 Aug; 17(1):134. PubMed ID: 28778144
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative virulence phenotypes and molecular genotypes of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen in China and the United States.
    Zhan G; Chen X; Kang Z; Huang L; Wang M; Wan A; Cheng P; Cao S; Jin S
    Fungal Biol; 2012 Jun; 116(6):643-53. PubMed ID: 22658310
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f.sp. tritici).
    Mueth NA; Ramachandran SR; Hulbert SH
    BMC Genomics; 2015 Sep; 16(1):718. PubMed ID: 26391470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.