BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29649470)

  • 1. Factors Influencing the Retention of Organic Solvents in Products Freeze-Dried From Co-Solvent Systems.
    Kunz C; Gieseler H
    J Pharm Sci; 2018 Aug; 107(8):2005-2012. PubMed ID: 29649470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical aspects of lyophilization using non-aqueous co-solvent systems.
    Teagarden DL; Baker DS
    Eur J Pharm Sci; 2002 Mar; 15(2):115-33. PubMed ID: 11849908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-Drying From Organic Co-Solvent Systems, Part 2: Process Modifications to Reduce Residual Solvent Levels and Improve Product Quality Attributes.
    Kunz C; Schuldt-Lieb S; Gieseler H
    J Pharm Sci; 2019 Jan; 108(1):399-415. PubMed ID: 30017885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation Screening and Freeze-Drying Process Optimization of Ginkgolide B Lyophilized Powder for Injection.
    Liu D; Galvanin F; Yu Y
    AAPS PharmSciTech; 2018 Feb; 19(2):541-550. PubMed ID: 28849380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-drying of tert-butyl alcohol/water cosolvent systems: effects of formulation and process variables on residual solvents.
    Wittaya-Areekul S; Nail SL
    J Pharm Sci; 1998 Apr; 87(4):491-5. PubMed ID: 9548903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-Drying From Organic Cosolvent Systems, Part 1: Thermal Analysis of Cosolvent-Based Placebo Formulations in the Frozen State.
    Kunz C; Schuldt-Lieb S; Gieseler H
    J Pharm Sci; 2018 Mar; 107(3):887-896. PubMed ID: 29133233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights from a Thermodynamic Study and Its Implications on the Freeze-Drying of Pharmaceutical Solutions Containing Water and
    Wang JC; Bruttini R; Liapis AI
    PDA J Pharm Sci Technol; 2019; 73(3):247-259. PubMed ID: 30651336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-Assisted Secondary Drying of Spray-Dried Polymers.
    Shepard KB; Dower AM; Ekdahl AM; Morgen MM; Baumann JM; Vodak DT
    Pharm Res; 2020 Jul; 37(8):156. PubMed ID: 32737611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Merits and Limitations of Dynamic Vapor Sorption Studies on the Morphology and Physicochemical State of Freeze-Dried Products.
    Kunz C; Gieseler H
    J Pharm Sci; 2018 Aug; 107(8):2179-2191. PubMed ID: 29698727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions.
    Dontireddy R; Crean AM
    Drug Dev Ind Pharm; 2011 Oct; 37(10):1141-9. PubMed ID: 21615280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naproxen Microparticulate Systems Prepared Using In Situ Crystallisation and Freeze-Drying Techniques.
    Solaiman A; Tatari AK; Elkordy AA
    AAPS PharmSciTech; 2017 Jul; 18(5):1438-1446. PubMed ID: 28004343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spray-Drying, Solvent-Casting and Freeze-Drying Techniques: a Comparative Study on their Suitability for the Enhancement of Drug Dissolution Rates.
    De Mohac LM; Caruana R; Cavallaro G; Giammona G; Licciardi M
    Pharm Res; 2020 Feb; 37(3):57. PubMed ID: 32076880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of low levels of amorphous content in inhalation grade lactose by moisture sorption isotherms.
    Vollenbroek J; Hebbink GA; Ziffels S; Steckel H
    Int J Pharm; 2010 Aug; 395(1-2):62-70. PubMed ID: 20493937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choosing Appropriate Solvents for ASD Preparation.
    Luebbert C; Real D; Sadowski G
    Mol Pharm; 2018 Nov; 15(11):5397-5409. PubMed ID: 30335401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subambient behavior of mannitol in ethanol-water co-solvent system.
    Takada A; Nail SL; Yonese M
    Pharm Res; 2009 Mar; 26(3):568-76. PubMed ID: 19003521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and stability of amorphous solid dispersions produced by a Freeze-drying method from DMSO.
    Valkama E; Haluska O; Lehto VP; Korhonen O; Pajula K
    Int J Pharm; 2021 Sep; 606():120902. PubMed ID: 34293468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmaceutical patent applications in freeze-drying.
    Ekenlebie E; Einfalt T; Karytinos AI; Ingham A
    Pharm Pat Anal; 2016 Sep; 5(6):407-416. PubMed ID: 27804787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in freeze-drying: variables, cycle optimization, and innovative techniques.
    Mehanna MM; Abla KK
    Pharm Dev Technol; 2022 Oct; 27(8):904-923. PubMed ID: 36174214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-drying of proteins: some emerging concerns.
    Roy I; Gupta MN
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):165-77. PubMed ID: 15032737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.