BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29649499)

  • 1. The spinal ependymal zone as a source of endogenous repair cells across vertebrates.
    Becker CG; Becker T; Hugnot JP
    Prog Neurobiol; 2018 Nov; 170():67-80. PubMed ID: 29649499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous neurogenesis in adult mammals after spinal cord injury.
    Duan H; Song W; Zhao W; Gao Y; Yang Z; Li X
    Sci China Life Sci; 2016 Dec; 59(12):1313-1318. PubMed ID: 27796638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury.
    Marichal N; Reali C; Rehermann MI; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1015():241-264. PubMed ID: 29080030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural cells and their progenitors in regenerating zebrafish spinal cord.
    Hui SP; Nag TC; Ghosh S
    Int J Dev Biol; 2020; 64(4-5-6):353-366. PubMed ID: 32658995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury.
    Briona LK; Poulain FE; Mosimann C; Dorsky RI
    Dev Biol; 2015 Jul; 403(1):15-21. PubMed ID: 25888075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early neurogenesis during caudal spinal cord regeneration in adult Gekko japonicus.
    Zhou Y; Xu Q; Li D; Zhao L; Wang Y; Liu M; Gu X; Liu Y
    J Mol Histol; 2013 Jun; 44(3):291-7. PubMed ID: 23143000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connexin Signaling Is Involved in the Reactivation of a Latent Stem Cell Niche after Spinal Cord Injury.
    Fabbiani G; Reali C; Valentín-Kahan A; Rehermann MI; Fagetti J; Falco MV; Russo RE
    J Neurosci; 2020 Mar; 40(11):2246-2258. PubMed ID: 32001613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.
    Hui SP; Nag TC; Ghosh S
    PLoS One; 2015; 10(12):e0143595. PubMed ID: 26630262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous neural stem cell responses to stroke and spinal cord injury.
    Grégoire CA; Goldenstein BL; Floriddia EM; Barnabé-Heider F; Fernandes KJ
    Glia; 2015 Aug; 63(8):1469-82. PubMed ID: 25921491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.
    Hamilton LK; Truong MK; Bednarczyk MR; Aumont A; Fernandes KJ
    Neuroscience; 2009 Dec; 164(3):1044-56. PubMed ID: 19747531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Profiling of Mouse Ependymal Cells after Spinal Cord Injury Identifies the Oncostatin Pathway as a Potential Key Regulator of Spinal Cord Stem Cell Fate.
    Chevreau R; Ghazale H; Ripoll C; Chalfouh C; Delarue Q; Hemonnot-Girard AL; Mamaeva D; Hirbec H; Rothhut B; Wahane S; Perrin FE; Noristani HN; Guerout N; Hugnot JP
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury.
    Swieck K; Conta-Steencken A; Middleton FA; Siebert JR; Osterhout DJ; Stelzner DJ
    BMC Neurosci; 2019 Mar; 20(1):10. PubMed ID: 30885135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current states of endogenous stem cells in adult spinal cord.
    Qin Y; Zhang W; Yang P
    J Neurosci Res; 2015 Mar; 93(3):391-8. PubMed ID: 25228050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cells in the adult human spinal cord ependymal region do not proliferate after injury.
    Paniagua-Torija B; Norenberg M; Arevalo-Martin A; Carballosa-Gautam MM; Campos-Martin Y; Molina-Holgado E; Garcia-Ovejero D
    J Pathol; 2018 Dec; 246(4):415-421. PubMed ID: 30091291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat.
    Mothe AJ; Tator CH
    Neuroscience; 2005; 131(1):177-87. PubMed ID: 15680701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury.
    Ren Y; Ao Y; O'Shea TM; Burda JE; Bernstein AM; Brumm AJ; Muthusamy N; Ghashghaei HT; Carmichael ST; Cheng L; Sofroniew MV
    Sci Rep; 2017 Jan; 7():41122. PubMed ID: 28117356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radial glial progenitors repair the zebrafish spinal cord following transection.
    Briona LK; Dorsky RI
    Exp Neurol; 2014 Jun; 256():81-92. PubMed ID: 24721238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular response after crush injury in adult zebrafish spinal cord.
    Hui SP; Dutta A; Ghosh S
    Dev Dyn; 2010 Nov; 239(11):2962-79. PubMed ID: 20931657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal cord regeneration: a phenomenon unique to urodeles?
    Chernoff EA
    Int J Dev Biol; 1996 Aug; 40(4):823-31. PubMed ID: 8877457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates.
    Lee-Liu D; Edwards-Faret G; Tapia VS; Larraín J
    Genesis; 2013 Aug; 51(8):529-44. PubMed ID: 23760835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.