These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 29649589)
1. Production of trans-chrysanthemic acid, the monoterpene acid moiety of natural pyrethrin insecticides, in tomato fruit. Xu H; Lybrand D; Bennewitz S; Tissier A; Last RL; Pichersky E Metab Eng; 2018 May; 47():271-278. PubMed ID: 29649589 [TBL] [Abstract][Full Text] [Related]
2. Engineering of tomato type VI glandular trichomes for trans-chrysanthemic acid biosynthesis, the acid moiety of natural pyrethrin insecticides. Wang Y; Wen J; Liu L; Chen J; Wang C; Li Z; Wang G; Pichersky E; Xu H Metab Eng; 2022 Jul; 72():188-199. PubMed ID: 35339691 [TBL] [Abstract][Full Text] [Related]
3. Coexpression Analysis Identifies Two Oxidoreductases Involved in the Biosynthesis of the Monoterpene Acid Moiety of Natural Pyrethrin Insecticides in Xu H; Moghe GD; Wiegert-Rininger K; Schilmiller AL; Barry CS; Last RL; Pichersky E Plant Physiol; 2018 Jan; 176(1):524-537. PubMed ID: 29122986 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcriptome analysis reveals candidate genes for the biosynthesis of natural insecticide in Tanacetum cinerariifolium. Khan S; Upadhyay S; Khan F; Tandon S; Shukla RK; Ghosh S; Gupta V; Banerjee S; Ur Rahman L BMC Genomics; 2017 Jan; 18(1):54. PubMed ID: 28068903 [TBL] [Abstract][Full Text] [Related]
5. Jasmone Hydroxylase, a Key Enzyme in the Synthesis of the Alcohol Moiety of Pyrethrin Insecticides. Li W; Zhou F; Pichersky E Plant Physiol; 2018 Aug; 177(4):1498-1509. PubMed ID: 29967096 [TBL] [Abstract][Full Text] [Related]
6. Selective regulation of pyrethrin biosynthesis by the specific blend of wound induced volatiles in Tanacetum cinerariifolium. Sakamori K; Ono N; Ihara M; Suzuki H; Matsuura H; Tanaka K; Ohta D; Kanaya S; Matsuda K Plant Signal Behav; 2016; 11(4):e1149675. PubMed ID: 26918634 [TBL] [Abstract][Full Text] [Related]
7. Pyrethric acid of natural pyrethrin insecticide: complete pathway elucidation and reconstitution in Nicotiana benthamiana. Xu H; Li W; Schilmiller AL; van Eekelen H; de Vos RCH; Jongsma MA; Pichersky E New Phytol; 2019 Jul; 223(2):751-765. PubMed ID: 30920667 [TBL] [Abstract][Full Text] [Related]
8. A Trichome-Specific, Plastid-Localized Li W; Lybrand DB; Xu H; Zhou F; Last RL; Pichersky E Front Plant Sci; 2020; 11():482. PubMed ID: 32391039 [No Abstract] [Full Text] [Related]
9. Pyrethrin Biosynthesis: The Cytochrome P450 Oxidoreductase CYP82Q3 Converts Jasmolone To Pyrethrolone. Li W; Lybrand DB; Zhou F; Last RL; Pichersky E Plant Physiol; 2019 Nov; 181(3):934-944. PubMed ID: 31451551 [TBL] [Abstract][Full Text] [Related]
10. How Plants Synthesize Pyrethrins: Safe and Biodegradable Insecticides. Lybrand DB; Xu H; Last RL; Pichersky E Trends Plant Sci; 2020 Dec; 25(12):1240-1251. PubMed ID: 32690362 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate. Gutensohn M; Nguyen TT; McMahon RD; Kaplan I; Pichersky E; Dudareva N Metab Eng; 2014 Jul; 24():107-16. PubMed ID: 24831707 [TBL] [Abstract][Full Text] [Related]
13. Draft Genome of Tanacetum Coccineum: Genomic Comparison of Closely Related Tanacetum-Family Plants. Yamashiro T; Shiraishi A; Nakayama K; Satake H Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806039 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of chrysanthemyl diphosphate synthase (CDS) gene in Tagetes erecta leads to the overproduction of pyrethrin. Gupta V; Khan S; Verma RK; Shanker K; Singh SV; Rahman LU Transgenic Res; 2022 Dec; 31(6):625-635. PubMed ID: 36006545 [TBL] [Abstract][Full Text] [Related]
15. Functional Validation of Phytoene Synthase and Lycopene ε-Cyclase Genes for High Lycopene Content in Autumn Olive Fruit ( Wang T; Hou Y; Hu H; Wang C; Zhang W; Li H; Cheng Z; Yang L J Agric Food Chem; 2020 Oct; 68(41):11503-11511. PubMed ID: 32936623 [TBL] [Abstract][Full Text] [Related]
16. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Gutensohn M; Orlova I; Nguyen TT; Davidovich-Rikanati R; Ferruzzi MG; Sitrit Y; Lewinsohn E; Pichersky E; Dudareva N Plant J; 2013 Aug; 75(3):351-63. PubMed ID: 23607888 [TBL] [Abstract][Full Text] [Related]
17. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity. Yang T; Gao L; Hu H; Stoopen G; Wang C; Jongsma MA J Biol Chem; 2014 Dec; 289(52):36325-35. PubMed ID: 25378387 [TBL] [Abstract][Full Text] [Related]
18. Tomato Fruits-A Platform for Metabolic Engineering of Terpenes. Gutensohn M; Dudareva N Methods Enzymol; 2016; 576():333-59. PubMed ID: 27480692 [TBL] [Abstract][Full Text] [Related]
19. Jasmonic acid is not a biosynthetic intermediate to produce the pyrethrolone moiety in pyrethrin II. Matsui R; Takiguchi K; Kuwata N; Oki K; Takahashi K; Matsuda K; Matsuura H Sci Rep; 2020 Apr; 10(1):6366. PubMed ID: 32286354 [TBL] [Abstract][Full Text] [Related]
20. Plastidial engineering with coupled farnesyl diphosphate pool reconstitution and enhancement for sesquiterpene biosynthesis in tomato fruit. Chen J; Tan J; Duan X; Wang Y; Wen J; Li W; Li Z; Wang G; Xu H Metab Eng; 2023 May; 77():41-52. PubMed ID: 36893914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]