BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

740 related articles for article (PubMed ID: 29649653)

  • 21. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice.
    Xiong Z; Lin M; Lin H; Huang M
    Carbohydr Polym; 2018 Jun; 189():79-86. PubMed ID: 29580429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Target-activated DNA nanomachines for the ATP detection based on the SERS of plasmonic coupling from gold nanoparticle aggregation.
    Cui Y; Wang H; Liu S; Wang Y; Huang J
    Analyst; 2020 Jan; 145(2):445-452. PubMed ID: 31819931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice.
    Pan X; Li L; Lin H; Tan J; Wang H; Liao M; Chen C; Shan B; Chen Y; Li M
    Biosens Bioelectron; 2019 Dec; 145():111713. PubMed ID: 31542676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip.
    Zheng Z; Wu L; Li L; Zong S; Wang Z; Cui Y
    Talanta; 2018 Oct; 188():507-515. PubMed ID: 30029406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Label-Free Surface-Enhanced Raman Spectroscopy Biosensor for On-Site Breast Cancer Detection Using Human Tears.
    Kim S; Kim TG; Lee SH; Kim W; Bang A; Moon SW; Song J; Shin JH; Yu JS; Choi S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7897-7904. PubMed ID: 31971765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection.
    Ma X; Xia Y; Ni L; Song L; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():657-61. PubMed ID: 24368285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor.
    David C; Guillot N; Shen H; Toury T; de la Chapelle ML
    Nanotechnology; 2010 Nov; 21(47):475501. PubMed ID: 21030778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current strategies of plasmonic nanoparticles assisted surface-enhanced Raman scattering toward biosensor studies.
    Zhou Y; Lu Y; Liu Y; Hu X; Chen H
    Biosens Bioelectron; 2023 May; 228():115231. PubMed ID: 36934607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe
    Pang Y; Wan N; Shi L; Wang C; Sun Z; Xiao R; Wang S
    Anal Chim Acta; 2019 Oct; 1077():288-296. PubMed ID: 31307721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of Pyocyanin Using a New Biodegradable SERS Biosensor Fabricated Using Gold Coated Zein Nanostructures Further Decorated with Gold Nanoparticles.
    Jia F; Barber E; Turasan H; Seo S; Dai R; Liu L; Li X; Bhunia AK; Kokini JL
    J Agric Food Chem; 2019 Apr; 67(16):4603-4610. PubMed ID: 30964288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.
    Wei H; Rodriguez K; Renneckar S; Leng W; Vikesland PJ
    Analyst; 2015 Aug; 140(16):5640-9. PubMed ID: 26133311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva.
    Zheng P; Li M; Jurevic R; Cushing SK; Liu Y; Wu N
    Nanoscale; 2015 Jul; 7(25):11005-12. PubMed ID: 26008641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surface-enhanced Raman spectroscopy.
    Cao C; Li P; Liao H; Wang J; Tang X; Yang L
    Anal Bioanal Chem; 2020 Jul; 412(19):4609-4617. PubMed ID: 32548768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection.
    Al-Ogaidi I; Gou H; Al-Kazaz AK; Aguilar ZP; Melconian AK; Zheng P; Wu N
    Anal Chim Acta; 2014 Feb; 811():76-80. PubMed ID: 24456597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar.
    Kim WH; Lee JU; Song S; Kim S; Choi YJ; Sim SJ
    Analyst; 2019 Feb; 144(5):1768-1776. PubMed ID: 30672519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of cellulose Nanofiber-based substrates for rapid detection of ferbam in kale by Surface-enhanced Raman spectroscopy.
    Sun L; Yu Z; Alsammarraie FK; Lin MH; Kong F; Huang M; Lin M
    Food Chem; 2021 Jun; 347():129023. PubMed ID: 33484959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.