These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29649919)

  • 1. Single-compartment models of retinal ganglion cells with different electrophysiologies.
    Qin W; Hadjinicolaou A; Grayden DB; Meffin H; Burkitt AN; Ibbotson MR; Kameneva T
    Network; 2017; 28(2-4):74-93. PubMed ID: 29649919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling intrinsic electrophysiological properties of ON and OFF retinal ganglion cells.
    Kameneva T; Meffin H; Burkitt AN
    J Comput Neurosci; 2011 Nov; 31(3):547-61. PubMed ID: 21431392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of morphology upon electrophysiological responses of retinal ganglion cells: simulation results.
    Maturana MI; Kameneva T; Burkitt AN; Meffin H; Grayden DB
    J Comput Neurosci; 2014 Apr; 36(2):157-75. PubMed ID: 23835760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the retinal network reacts to epiretinal stimulation to form the prosthetic visual input to the cortex.
    Cottaris NP; Elfar SD
    J Neural Eng; 2005 Mar; 2(1):S74-90. PubMed ID: 15876658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of ganglion cells to repetitive electrical stimulation of the retina.
    Jensen RJ; Rizzo JF
    J Neural Eng; 2007 Mar; 4(1):S1-6. PubMed ID: 17325407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells.
    Kameneva T; Maturana MI; Hadjinicolaou AE; Cloherty SL; Ibbotson MR; Grayden DB; Burkitt AN; Meffin H
    J Neural Eng; 2016 Feb; 13(1):016017. PubMed ID: 26735572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the impact of common noise inputs on the network activity of retinal ganglion cells.
    Vidne M; Ahmadian Y; Shlens J; Pillow JW; Kulkarni J; Litke AM; Chichilnisky EJ; Simoncelli E; Paninski L
    J Comput Neurosci; 2012 Aug; 33(1):97-121. PubMed ID: 22203465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are Distinctly Tuned to Size, Speed, and Object Motion.
    Jacoby J; Schwartz GW
    J Neurosci; 2017 Jan; 37(3):610-625. PubMed ID: 28100743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-rectangular waveforms are more charge-efficient than rectangular one in eliciting network-mediated responses of ON type retinal ganglion cells.
    Lee JI; Im M
    J Neural Eng; 2018 Oct; 15(5):055004. PubMed ID: 30018183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration.
    Habib AG; Cameron MA; Suaning GJ; Lovell NH; Morley JW
    J Neural Eng; 2013 Jun; 10(3):036013. PubMed ID: 23612906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling temporal behavior of postnatal cat retinal ganglion cells.
    Benison G; Keizer J; Chalupa LM; Robinson DW
    J Theor Biol; 2001 May; 210(2):187-99. PubMed ID: 11371174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired Approach to Modeling Retinal Ganglion Cells Using System Identification Techniques.
    Vance PJ; Das GP; Kerr D; Coleman SA; McGinnity TM; Gollisch T; Liu JK
    IEEE Trans Neural Netw Learn Syst; 2018 May; 29(5):1796-1808. PubMed ID: 28422669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons.
    Maturana MI; Apollo NV; Garrett DJ; Kameneva T; Cloherty SL; Grayden DB; Burkitt AN; Ibbotson MR; Meffin H
    PLoS Comput Biol; 2018 Feb; 14(2):e1005997. PubMed ID: 29432411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation and inhibition of retinal ganglion cells in response to epiretinal electrical stimulation: a computational modelling study.
    Abramian M; Lovell NH; Morley JW; Suaning GJ; Dokos S
    J Neural Eng; 2015 Feb; 12(1):016002. PubMed ID: 25426958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response dynamics of bullfrog ON-OFF RGCs to different stimulus durations.
    Xiao L; Zhang PM; Wu S; Liang PJ
    J Comput Neurosci; 2014 Aug; 37(1):149-60. PubMed ID: 24390227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. See globally, spike locally: oscillations in a retinal model encode large visual features.
    Stephens GJ; Neuenschwander S; George JS; Singer W; Kenyon GT
    Biol Cybern; 2006 Oct; 95(4):327-48. PubMed ID: 16897092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina.
    Liu JK; Gollisch T
    PLoS Comput Biol; 2015 Jul; 11(7):e1004425. PubMed ID: 26230927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding of retinal ganglion cell spike trains evoked by temporally patterned electrical stimulation.
    Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH
    Brain Res; 2010 Aug; 1348():71-83. PubMed ID: 20599822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sites of neuronal excitation by epiretinal electrical stimulation.
    Schiefer MA; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):5-13. PubMed ID: 16562626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multineuronal codes in retinal signaling.
    Meister M
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):609-14. PubMed ID: 8570603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.