These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29650040)

  • 1. Gene-level differential analysis at transcript-level resolution.
    Yi L; Pimentel H; Bray NL; Pachter L
    Genome Biol; 2018 Apr; 19(1):53. PubMed ID: 29650040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level.
    Zhang Z; Wang W
    Bioinformatics; 2014 Jun; 30(12):i283-i292. PubMed ID: 24931995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts.
    Ntranos V; Kamath GM; Zhang JM; Pachter L; Tse DN
    Genome Biol; 2016 May; 17(1):112. PubMed ID: 27230763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using equivalence class counts for fast and accurate testing of differential transcript usage.
    Cmero M; Davidson NM; Oshlack A
    F1000Res; 2019; 8():265. PubMed ID: 31143443
    [No Abstract]   [Full Text] [Related]  

  • 5. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.
    Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TIGAR: transcript isoform abundance estimation method with gapped alignment of RNA-Seq data by variational Bayesian inference.
    Nariai N; Hirose O; Kojima K; Nagasaki M
    Bioinformatics; 2013 Sep; 29(18):2292-9. PubMed ID: 23821651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dividing out quantification uncertainty allows efficient assessment of differential transcript expression with edgeR.
    Baldoni PL; Chen Y; Hediyeh-Zadeh S; Liao Y; Dong X; Ritchie ME; Shi W; Smyth GK
    Nucleic Acids Res; 2024 Feb; 52(3):e13. PubMed ID: 38059347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell mRNA quantification and differential analysis with Census.
    Qiu X; Hill A; Packer J; Lin D; Ma YA; Trapnell C
    Nat Methods; 2017 Mar; 14(3):309-315. PubMed ID: 28114287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A discriminative learning approach to differential expression analysis for single-cell RNA-seq.
    Ntranos V; Yi L; Melsted P; Pachter L
    Nat Methods; 2019 Feb; 16(2):163-166. PubMed ID: 30664774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swimming downstream: statistical analysis of differential transcript usage following Salmon quantification.
    Love MI; Soneson C; Patro R
    F1000Res; 2018; 7():952. PubMed ID: 30356428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salmon provides fast and bias-aware quantification of transcript expression.
    Patro R; Duggal G; Love MI; Irizarry RA; Kingsford C
    Nat Methods; 2017 Apr; 14(4):417-419. PubMed ID: 28263959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data.
    Kanitz A; Gypas F; Gruber AJ; Gruber AR; Martin G; Zavolan M
    Genome Biol; 2015 Jul; 16(1):150. PubMed ID: 26201343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixture models reveal multiple positional bias types in RNA-Seq data and lead to accurate transcript concentration estimates.
    Tuerk A; Wiktorin G; Güler S
    PLoS Comput Biol; 2017 May; 13(5):e1005515. PubMed ID: 28505151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential gene expression analysis using coexpression and RNA-Seq data.
    Yang EW; Girke T; Jiang T
    Bioinformatics; 2013 Sep; 29(17):2153-61. PubMed ID: 23793751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyester: simulating RNA-seq datasets with differential transcript expression.
    Frazee AC; Jaffe AE; Langmead B; Leek JT
    Bioinformatics; 2015 Sep; 31(17):2778-84. PubMed ID: 25926345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-Seq: a method for comprehensive transcriptome analysis.
    Nagalakshmi U; Waern K; Snyder M
    Curr Protoc Mol Biol; 2010 Jan; Chapter 4():Unit 4.11.1-13. PubMed ID: 20069539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Length bias correction for RNA-seq data in gene set analyses.
    Gao L; Fang Z; Zhang K; Zhi D; Cui X
    Bioinformatics; 2011 Mar; 27(5):662-9. PubMed ID: 21252076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization and analysis of RNA-Seq assembly graphs.
    Nazarie FW; Shih B; Angus T; Barnett MW; Chen SH; Summers KM; Klein K; Faulkner GJ; Saini HK; Watson M; Dongen SV; Enright AJ; Freeman TC
    Nucleic Acids Res; 2019 Aug; 47(14):7262-7275. PubMed ID: 31305886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression.
    Nakamura T; Yabuta Y; Okamoto I; Aramaki S; Yokobayashi S; Kurimoto K; Sekiguchi K; Nakagawa M; Yamamoto T; Saitou M
    Nucleic Acids Res; 2015 May; 43(9):e60. PubMed ID: 25722368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.