BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29650148)

  • 1. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants.
    Wang L; Liu D
    Plant Sci; 2018 Jun; 271():108-116. PubMed ID: 29650148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation.
    Wang L; Lu S; Zhang Y; Li Z; Du X; Liu D
    J Integr Plant Biol; 2014 Mar; 56(3):299-314. PubMed ID: 24528675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation.
    Hurley BA; Tran HT; Marty NJ; Park J; Snedden WA; Mullen RT; Plaxton WC
    Plant Physiol; 2010 Jul; 153(3):1112-22. PubMed ID: 20348213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of an Arabidopsis phosphate starvation-induced secreted acid phosphatase as a vegetative storage protein.
    Sun L; Wang L; Zheng Z; Liu D
    Plant Sci; 2018 Dec; 277():278-284. PubMed ID: 30466593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The THO/TREX Complex Active in miRNA Biogenesis Negatively Regulates Root-Associated Acid Phosphatase Activity Induced by Phosphate Starvation.
    Tao S; Zhang Y; Wang X; Xu L; Fang X; Lu ZJ; Liu D
    Plant Physiol; 2016 Aug; 171(4):2841-53. PubMed ID: 27329222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signaling components involved in plant responses to phosphate starvation.
    Yuan H; Liu D
    J Integr Plant Biol; 2008 Jul; 50(7):849-59. PubMed ID: 18713395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice.
    Tian J; Wang C; Zhang Q; He X; Whelan J; Shou H
    J Integr Plant Biol; 2012 Sep; 54(9):631-9. PubMed ID: 22805094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of a tomato purple acid phosphatase during seed germination and seedling growth under phosphate stress.
    Suen PK; Zhang S; Sun SS
    Plant Cell Rep; 2015 Jun; 34(6):981-92. PubMed ID: 25656565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis gene hypersensitive to phosphate starvation 3 encodes ethylene overproduction 1.
    Wang L; Dong J; Gao Z; Liu D
    Plant Cell Physiol; 2012 Jun; 53(6):1093-105. PubMed ID: 22623414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis.
    Ito S; Nozoye T; Sasaki E; Imai M; Shiwa Y; Shibata-Hatta M; Ishige T; Fukui K; Ito K; Nakanishi H; Nishizawa NK; Yajima S; Asami T
    PLoS One; 2015; 10(3):e0119724. PubMed ID: 25793732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZmAPRG, an uncharacterized gene, enhances acid phosphatase activity and Pi concentration in maize leaf during phosphate starvation.
    Yu T; Liu C; Lu X; Bai Y; Zhou L; Cai Y
    Theor Appl Genet; 2019 Apr; 132(4):1035-1048. PubMed ID: 30523354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Phosphate-Starvation Induced RING-Type E3 Ligase Maintains Phosphate Homeostasis Partially Through OsSPX2 in Rice.
    Yang J; Xie MY; Wang L; Yang ZL; Tian ZH; Wang ZY; Xu JM; Liu BH; Deng LW; Mao CZ; Lin HH
    Plant Cell Physiol; 2018 Dec; 59(12):2564-2575. PubMed ID: 30329110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of phosphate transport and signaling in higher plants.
    Wang F; Deng M; Xu J; Zhu X; Mao C
    Semin Cell Dev Biol; 2018 Feb; 74():114-122. PubMed ID: 28648582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin.
    Tang H; Li X; Zu C; Zhang F; Shen J
    J Plant Physiol; 2013 Sep; 170(14):1243-50. PubMed ID: 23746995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root developmental adaptation to phosphate starvation: better safe than sorry.
    Péret B; Clément M; Nussaume L; Desnos T
    Trends Plant Sci; 2011 Aug; 16(8):442-50. PubMed ID: 21684794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice.
    Gao W; Lu L; Qiu W; Wang C; Shou H
    Plant Cell Physiol; 2017 May; 58(5):885-892. PubMed ID: 28371895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate starvation signaling in rice.
    Hu B; Chu C
    Plant Signal Behav; 2011 Jul; 6(7):927-9. PubMed ID: 21617375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato.
    Baldwin JC; Karthikeyan AS; Raghothama KG
    Plant Physiol; 2001 Feb; 125(2):728-37. PubMed ID: 11161030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of plant immunity and biotic interactions under phosphate deficiency.
    Inoue K; Tsuchida N; Saijo Y
    J Plant Res; 2024 May; 137(3):343-357. PubMed ID: 38693461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of phosphate starvation responses in higher plants.
    Yang XJ; Finnegan PM
    Ann Bot; 2010 Apr; 105(4):513-26. PubMed ID: 20181569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.