These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2965041)

  • 1. Distribution of the flux control in convergent metabolic pathways: theory and application to experimental and simulated systems.
    Torres NV; Mateo F; Sicilia J; Meléndez-Hevia E
    Int J Biochem; 1988; 20(2):161-5. PubMed ID: 2965041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The glucose 6-phosphate metabolic crossroads in brain. Studies at the enzyme level.
    Vallejo CG; Marco R; Sebastián J
    Arch Biochem Biophys; 1971 Nov; 147(1):41-8. PubMed ID: 4398889
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of epinephrine and dibutyryl cyclic AMP on glucose 1,6-bisphosphate levels and the activities of hexokinase, phosphofructokinase and phosphoglucomutase in the isolated rat diaphragm.
    Beitner R; Haberman S; Nordenberg J
    Mol Cell Endocrinol; 1978 Apr; 10(2):135-47. PubMed ID: 207604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium enzymes in metabolic pathways.
    Brooks SP
    Biochem Cell Biol; 1996; 74(3):411-6. PubMed ID: 8883847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic description of sequential, reversible, Michaelis-Menten reactions: practical application of theory to metabolic pathways.
    Brooks SP; Storey KB
    Mol Cell Biochem; 1992 Sep; 115(1):43-8. PubMed ID: 1435764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constraint matching as a means of designing biochemical experiments in multi-enzyme systems.
    Garfinkel D
    J Theor Biol; 1989 Mar; 137(2):221-34. PubMed ID: 2532275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between the levels of glucose 1,6-diphosphate and the activities of phosphofructokinase, phosphoglucomutase and hexokinase, in skeletal and heart muscles from rats of different ages.
    Beitner R; Nordenberg J; Cohen TJ
    Int J Biochem; 1979; 10(7):603-8. PubMed ID: 157302
    [No Abstract]   [Full Text] [Related]  

  • 8. Glucose-1,6-diphosphate and carbohydrate metabolism in skeletal muscle of old rats.
    Nordenberg J; Heffetz D; Cohen TJ; Beitner R
    Int J Biochem; 1981; 13(3):317-21. PubMed ID: 6452298
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphofructokinase activity and the binding of enzymes to glycogen particles in the perfused psoas muscle of the rabbit.
    Birkel G; Bauer HP; Hofer HW
    Int J Biochem; 1986; 18(1):79-83. PubMed ID: 2935435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory mechanisms of enzymes in carbohydrate metabolism.
    Heinrich PC; Holzer H
    Nutr Metab; 1975; 18 Suppl 1():13-29. PubMed ID: 170565
    [No Abstract]   [Full Text] [Related]  

  • 11. Cholesterol induced changes in glucose-6-phosphate generating enzymes, concanavalin A agglutinability and haemolytic activity of axenic Entamoeba histolytica.
    Katiyar SK; Prasad AK; Ghoshal S; Das SR; Sagar P
    Ann Trop Med Parasitol; 1987 Jun; 81(3):201-5. PubMed ID: 2889429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of lithium ions on the activity of glycolysis enzymes in the brain and peripheral blood leukocytes of rats].
    Horodnicki JM; Wasik A; Firko M; Janicka B
    Psychiatr Pol; 1979; 13(6):543-8. PubMed ID: 161028
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of glucose on the level of glycolytic enzymes in yeast.
    Hommes FA
    Arch Biochem Biophys; 1966 Apr; 114(1):231-3. PubMed ID: 4224758
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparison of control analysis data using different approaches: modelling and experiments with muscle extract.
    Puigjaner J; Raïs B; Burgos M; Comin B; Ovádi J; Cascante M
    FEBS Lett; 1997 Nov; 418(1-2):47-52. PubMed ID: 9414093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of glucose metabolism in pancreatic beta-cells by glucokinase, hexokinase, and phosphofructokinase. Model study with cell lines derived from beta-cells.
    Shimizu T; Parker JC; Najafi H; Matschinsky FM
    Diabetes; 1988 Nov; 37(11):1524-30. PubMed ID: 2972577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomeric specificity of enzymes of D-glucose metabolism.
    Wurster B; Hess B
    FEBS Lett; 1974 Mar; 40(0):suppl:S112-8. PubMed ID: 4368416
    [No Abstract]   [Full Text] [Related]  

  • 17. Heterogeneity of human platelets. Metabolic and kinetic evidence suggestive of young and old platelets.
    Karpatkin S
    Ser Haematol; 1971; 4(1):75-97. PubMed ID: 4256112
    [No Abstract]   [Full Text] [Related]  

  • 18. Developmental changes of glycolytic and gluconeogenic enzymes in fetal and neonatal rat liver.
    Schaub J; Gutmann I; Lippert H
    Horm Metab Res; 1972 Mar; 4(2):110-9. PubMed ID: 4337573
    [No Abstract]   [Full Text] [Related]  

  • 19. Enzyme-to-enzyme channeling in the early steps of glycolysis in rat pancreatic islets.
    Malaisse WJ; Zhang Y; Sener A
    Endocrine; 2004 Jul; 24(2):105-9. PubMed ID: 15347834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture.
    Guedon E; Desvaux M; Petitdemange H
    J Bacteriol; 2000 Apr; 182(7):2010-7. PubMed ID: 10715010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.