These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29650951)

  • 1. Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits.
    Hou T; Charlier B; Holtz F; Veksler I; Zhang Z; Thomas R; Namur O
    Nat Commun; 2018 Apr; 9(1):1415. PubMed ID: 29650951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magmatic immiscibility and the origin of magnetite-(apatite) iron deposits.
    Pietruszka DK; Hanchar JM; Tornos F; Wirth R; Graham NA; Severin KP; Velasco F; Steele-MacInnis M; Bain WM
    Nat Commun; 2023 Dec; 14(1):8424. PubMed ID: 38114455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic model of the El Laco magnetite-apatite deposits by extrusion of iron-rich melt.
    Keller T; Tornos F; Hanchar JM; Pietruszka DK; Soldati A; Dingwell DB; Suckale J
    Nat Commun; 2022 Oct; 13(1):6114. PubMed ID: 36253366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of iron-rich hydrosaline liquids in the formation of Kiruna-type iron oxide-apatite deposits.
    Zeng LP; Zhao XF; Spandler C; Mavrogenes JA; Mernagh TP; Liao W; Fan YZ; Hu Y; Fu B; Li JW
    Sci Adv; 2024 Apr; 10(17):eadk2174. PubMed ID: 38657067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.
    Shellnutt JG
    PLoS One; 2018; 13(3):e0194155. PubMed ID: 29584745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Fe-O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores.
    Troll VR; Weis FA; Jonsson E; Andersson UB; Majidi SA; Högdahl K; Harris C; Millet MA; Chinnasamy SS; Kooijman E; Nilsson KP
    Nat Commun; 2019 Apr; 10(1):1712. PubMed ID: 30979878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin of Cu/Au ratios in porphyry-type ore deposits.
    Halter WE; Pettke T; Heinrich CA
    Science; 2002 Jun; 296(5574):1844-6. PubMed ID: 12052953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation state of Cu in silicate melts at upper mantle conditions.
    Liu X; Zhang L; Zhu S; Li L; Xiong X
    Sci Rep; 2024 Mar; 14(1):5802. PubMed ID: 38461155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga.
    Meng X; Kleinsasser JM; Richards JP; Tapster SR; Jugo PJ; Simon AC; Kontak DJ; Robb L; Bybee GM; Marsh JH; Stern RA
    Nat Commun; 2021 Apr; 12(1):2189. PubMed ID: 33850122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal evolution of Andean iron oxide-apatite (IOA) deposits as revealed by magnetite thermometry.
    Palma G; Reich M; Barra F; Ovalle JT; Del Real I; Simon AC
    Sci Rep; 2021 Sep; 11(1):18424. PubMed ID: 34531472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace element partitioning in basaltic systems as a function of oxygen fugacity.
    Leuthold J; Blundy J; Ulmer P
    Contrib Mineral Petrol; 2023; 178(12):95. PubMed ID: 38617115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of carbonatites-liquid immiscibility caught in the act.
    Berndt J; Klemme S
    Nat Commun; 2022 May; 13(1):2892. PubMed ID: 35610205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization.
    Sun W; Arculus RJ; Kamenetsky VS; Binns RA
    Nature; 2004 Oct; 431(7011):975-8. PubMed ID: 15496920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fate of nitrogen during core-mantle separation on Earth.
    Grewal DS; Dasgupta R; Holmes AK; Costin G; Li Y; Tsuno K
    Geochim Cosmochim Acta; 2019 Apr; 251():87-115. PubMed ID: 35153302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degassing of reduced carbon from planetary basalts.
    Wetzel DT; Rutherford MJ; Jacobsen SD; Hauri EH; Saal AE
    Proc Natl Acad Sci U S A; 2013 May; 110(20):8010-3. PubMed ID: 23569260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melt inclusions in veins: linking magmas and porphyry Cu deposits.
    Harris AC; Kamenetsky VS; White NC; van Achterbergh E; Ryan CG
    Science; 2003 Dec; 302(5653):2109-11. PubMed ID: 14684818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicate liquid immiscibility in lunar magmas, evidenced by melt inclusions in lunar rocks.
    Roedder E; Weiblen PW
    Science; 1970 Jan; 167(3918):641-4. PubMed ID: 17781528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting magma chemistry in the Candelaria IOCG district caused by changing tectonic regimes.
    Romero R; Barra F; Reich M; Ojeda A; Tapia MJ; Del Real I; Simon A
    Sci Rep; 2024 May; 14(1):10793. PubMed ID: 38734754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Garnet crystallization does not drive oxidation at arcs.
    Holycross M; Cottrell E
    Science; 2023 May; 380(6644):506-509. PubMed ID: 37141374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compositional boundary layers trigger liquid unmixing in a basaltic crystal mush.
    Honour VC; Holness MB; Charlier B; Piazolo SC; Namur O; Prosa TJ; Martin I; Helz RT; Maclennan J; Jean MM
    Nat Commun; 2019 Oct; 10(1):4821. PubMed ID: 31645560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.