BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29650976)

  • 1. Wnt signal activation induces midbrain specification through direct binding of the beta-catenin/TCF4 complex to the EN1 promoter in human pluripotent stem cells.
    Kim JY; Lee JS; Hwang HS; Lee DR; Park CY; Jung SJ; You YR; Kim DS; Kim DW
    Exp Mol Med; 2018 Apr; 50(4):1-13. PubMed ID: 29650976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excessive Wnt/beta-catenin signaling promotes midbrain floor plate neurogenesis, but results in vacillating dopamine progenitors.
    Nouri N; Patel MJ; Joksimovic M; Poulin JF; Anderegg A; Taketo MM; Ma YC; Awatramani R
    Mol Cell Neurosci; 2015 Sep; 68():131-42. PubMed ID: 26164566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting spatiotemporal regulation of FZD5 during neural patterning for efficient ventral midbrain specification.
    Yang A; Chidiac R; Russo E; Steenland H; Pauli Q; Bonin R; Blazer LL; Adams JJ; Sidhu SS; Goeva A; Salahpour A; Angers S
    Development; 2024 Mar; 151(5):. PubMed ID: 38358799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OCT4 regulates WNT/β-catenin signaling and prevents mesoendoderm differentiation by repressing EOMES in porcine pluripotent stem cells.
    Xu T; Su P; Wu L; Li D; Qin W; Li Q; Zhou J; Miao YL
    J Cell Physiol; 2023 Dec; 238(12):2855-2866. PubMed ID: 37942811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of astrocytes with characteristics of ventral midbrain from human embryonic stem cells.
    Yeon GB; Jeon BM; Yoo SH; Kim D; Oh SS; Park S; Shin WH; Kim HW; Na D; Kim DW; Kim DS
    Stem Cell Rev Rep; 2023 Aug; 19(6):1890-1906. PubMed ID: 37067644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wnt/β-catenin promotes gastric fundus specification in mice and humans.
    McCracken KW; Aihara E; Martin B; Crawford CM; Broda T; Treguier J; Zhang X; Shannon JM; Montrose MH; Wells JM
    Nature; 2017 Jan; 541(7636):182-187. PubMed ID: 28052057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput generation of midbrain dopaminergic neuron organoids from reporter human pluripotent stem cells.
    Sarrafha L; Parfitt GM; Reyes R; Goldman C; Coccia E; Kareva T; Ahfeldt T
    STAR Protoc; 2021 Jun; 2(2):100463. PubMed ID: 33997803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons.
    Chen Y; Kuang J; Niu Y; Zhu H; Chen X; So KF; Xu A; Shi L
    Neural Regen Res; 2024 Apr; 19(4):908-914. PubMed ID: 37843228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic control of Wnt signaling models cell-intrinsic embryogenic patterning using 2D human pluripotent stem cell culture.
    Repina NA; Johnson HJ; Bao X; Zimmermann JA; Joy DA; Bi SZ; Kane RS; Schaffer DV
    Development; 2023 Jul; 150(14):. PubMed ID: 37401411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. deCLUTTER2+ - a pipeline to analyze calcium traces in a stem cell model for ventral midbrain patterned astrocytes.
    Grochowska MM; Ferraro F; Carreras Mascaro A; Natale D; Winkelaar A; Boumeester V; Breedveld GJ; Bonifati V; Mandemakers W
    Dis Model Mech; 2023 Jun; 16(6):. PubMed ID: 37260295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia.
    Doostparast Torshizi A; Armoskus C; Zhang H; Forrest MP; Zhang S; Souaiaia T; Evgrafov OV; Knowles JA; Duan J; Wang K
    Sci Adv; 2019 Sep; 5(9):eaau4139. PubMed ID: 31535015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commentary: Ghrelin promotes midbrain neural stem cells differentiation to dopaminergic neurons through the Wnt/β-catenin pathway.
    Gayden JD; Freyberg Z
    Front Cell Neurosci; 2020; 14():248. PubMed ID: 32973452
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic modeling of stem cell transcriptome dynamics to identify regulatory modules of normal and disturbed neuroectodermal differentiation.
    Meisig J; Dreser N; Kapitza M; Henry M; Rotshteyn T; Rahnenführer J; Hengstler JG; Sachinidis A; Waldmann T; Leist M; Blüthgen N
    Nucleic Acids Res; 2020 Dec; 48(22):12577-12592. PubMed ID: 33245762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The people behind the papers - Andy Yang and Stephane Angers.
    Development; 2024 Mar; 151(5):. PubMed ID: 38436209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal transcriptome atlas reveals the regional specification of the developing human brain.
    Li Y; Li Z; Wang C; Yang M; He Z; Wang F; Zhang Y; Li R; Gong Y; Wang B; Fan B; Wang C; Chen L; Li H; Shi P; Wang N; Wei Z; Wang YL; Jin L; Du P; Dong J; Jiao J
    Cell; 2023 Dec; 186(26):5892-5909.e22. PubMed ID: 38091994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pluripotent stem cells for the study of CNS development.
    Petros TJ; Tyson JA; Anderson SA
    Front Mol Neurosci; 2011; 4():30. PubMed ID: 22016722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gintonin Mitigates MPTP-Induced Loss of Nigrostriatal Dopaminergic Neurons and Accumulation of α-Synuclein via the Nrf2/HO-1 Pathway.
    Jo MG; Ikram M; Jo MH; Yoo L; Chung KC; Nah SY; Hwang H; Rhim H; Kim MO
    Mol Neurobiol; 2019 Jan; 56(1):39-55. PubMed ID: 29675576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-microenvironments initiate TCF4 expression rescuing nuclear β-catenin activity in MCF-7 breast cancer cells.
    Sergio S; Coluccia AML; Lemma ED; Spagnolo B; Vergara D; Maffia M; De Vittorio M; Pisanello F
    Acta Biomater; 2020 Feb; 103():153-164. PubMed ID: 31843716
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Peluffo G; Subedee A; Harper NW; Kingston N; Jovanović B; Flores F; Stevens LE; Beca F; Trinh A; Chilamakuri CSR; Papachristou EK; Murphy K; Su Y; Marusyk A; D'Santos CS; Rueda OM; Beck AH; Caldas C; Carroll JS; Polyak K
    Cancer Res; 2019 Aug; 79(16):4173-4183. PubMed ID: 31239270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Causal Networks to Adverse Outcome Pathways: A Developmental Neurotoxicity Case Study.
    Ramšak Ž; Modic V; Li RA; Vom Berg C; Zupanic A
    Front Toxicol; 2022; 4():815754. PubMed ID: 35295214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.