These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29650980)

  • 1. Protein docking refinement by convex underestimation in the low-dimensional subspace of encounter complexes.
    Zarbafian S; Moghadasi M; Roshandelpoor A; Nan F; Li K; Vakli P; Vajda S; Kozakov D; Paschalidis IC
    Sci Rep; 2018 Apr; 8(1):5896. PubMed ID: 29650980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Subspace Semi-Definite programming-based Underestimation (SSDU) method for stochastic global optimization in protein docking.
    Nan F; Moghadasi M; Vakili P; Vajda S; Kozakov D; Ch Paschalidis I
    Proc IEEE Conf Decis Control; 2014 Dec; 2014():4623-4628. PubMed ID: 25914440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein docking by the underestimation of free energy funnels in the space of encounter complexes.
    Shen Y; Paschalidis ICh; Vakili P; Vajda S
    PLoS Comput Biol; 2008 Oct; 4(10):e1000191. PubMed ID: 18846200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-receptor docking with the Mining Minima optimizer.
    David L; Luo R; Gilson MK
    J Comput Aided Mol Des; 2001 Feb; 15(2):157-71. PubMed ID: 11272702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GeauxDock: A novel approach for mixed-resolution ligand docking using a descriptor-based force field.
    Ding Y; Fang Y; Feinstein WP; Ramanujam J; Koppelman DM; Moreno J; Brylinski M; Jarrell M
    J Comput Chem; 2015 Oct; 36(27):2013-26. PubMed ID: 26250822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CLUB-MARTINI: Selecting Favourable Interactions amongst Available Candidates, a Coarse-Grained Simulation Approach to Scoring Docking Decoys.
    Hou Q; Lensink MF; Heringa J; Feenstra KA
    PLoS One; 2016; 11(5):e0155251. PubMed ID: 27166787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Docking with PIPER and refinement with SDU in rounds 6-11 of CAPRI.
    Shen Y; Brenke R; Kozakov D; Comeau SR; Beglov D; Vajda S
    Proteins; 2007 Dec; 69(4):734-42. PubMed ID: 17853451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem.
    Jackson RM; Gabb HA; Sternberg MJ
    J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-efficient docking of flexible ligands into active sites of proteins.
    Rarey M; Kramer B; Lengauer T
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():300-8. PubMed ID: 7584452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced sampling of protein conformational states for dynamic cross-docking within the protein-protein docking server SwarmDock.
    Torchala M; Gerguri T; Chaleil RAG; Gordon P; Russell F; Keshani M; Bates PA
    Proteins; 2020 Aug; 88(8):962-972. PubMed ID: 31697436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DockRank: ranking docked conformations using partner-specific sequence homology-based protein interface prediction.
    Xue LC; Jordan RA; El-Manzalawy Y; Dobbs D; Honavar V
    Proteins; 2014 Feb; 82(2):250-67. PubMed ID: 23873600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm.
    Zhou P; Jin B; Li H; Huang SY
    Nucleic Acids Res; 2018 Jul; 46(W1):W443-W450. PubMed ID: 29746661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling geometries of protein-protein complexes.
    Guerler A; Lorenzen S; Krull F; Knapp EW
    Genome Inform; 2008; 20():260-9. PubMed ID: 19425140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encounter complexes and dimensionality reduction in protein-protein association.
    Kozakov D; Li K; Hall DR; Beglov D; Zheng J; Vakili P; Schueler-Furman O; Paschalidis ICh; Clore GM; Vajda S
    Elife; 2014 Apr; 3():e01370. PubMed ID: 24714491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and minimizing CAPRI round 30 symmetrical protein complexes from CASP-11 structural models.
    El Houasli M; Maigret B; Devignes MD; Ghoorah AW; Grudinin S; Ritchie DW
    Proteins; 2017 Mar; 85(3):463-469. PubMed ID: 27701764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach.
    Lam PC; Abagyan R; Totrov M
    J Comput Aided Mol Des; 2018 Jan; 32(1):187-198. PubMed ID: 28887659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and energy determinants in protein-RNA docking.
    Pérez-Cano L; Romero-Durana M; Fernández-Recio J
    Methods; 2017 Apr; 118-119():163-170. PubMed ID: 27816523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.