BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 29651105)

  • 21. Diversity-oriented synthesis: producing chemical tools for dissecting biology.
    O' Connor CJ; Beckmann HS; Spring DR
    Chem Soc Rev; 2012 Jun; 41(12):4444-56. PubMed ID: 22491328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Design in Practice: A Review of Selected Projects in a French Research Institute That Illustrates the Link between Chemical Biology and Medicinal Chemistry.
    Deprez B; Bosc D; Charton J; Couturier C; Deprez-Poulain R; Flipo M; Leroux F; Villemagne B; Willand N
    Molecules; 2021 Oct; 26(19):. PubMed ID: 34641626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Rapid Python-Based Methodology for Target-Focused Combinatorial Library Design.
    Li S; Song Y; Liu X; Li H
    Comb Chem High Throughput Screen; 2016; 19(1):25-35. PubMed ID: 26522993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The discovery of antibacterial agents using diversity-oriented synthesis.
    Galloway WR; Bender A; Welch M; Spring DR
    Chem Commun (Camb); 2009 May; (18):2446-62. PubMed ID: 19532856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methods for the elucidation of protein-small molecule interactions.
    McFedries A; Schwaid A; Saghatelian A
    Chem Biol; 2013 May; 20(5):667-73. PubMed ID: 23706633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A unified lead-oriented synthesis of over fifty molecular scaffolds.
    Doveston RG; Tosatti P; Dow M; Foley DJ; Li HY; Campbell AJ; House D; Churcher I; Marsden SP; Nelson A
    Org Biomol Chem; 2015 Jan; 13(3):859-65. PubMed ID: 25408068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploration of the Chemical Space of DNA-encoded Libraries.
    Pikalyova R; Zabolotna Y; Volochnyuk DM; Horvath D; Marcou G; Varnek A
    Mol Inform; 2022 Jun; 41(6):e2100289. PubMed ID: 34981643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries.
    Lenci E; Baldini L; Trabocchi A
    Bioorg Med Chem; 2021 Jul; 41():116218. PubMed ID: 34030087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries.
    Franzini RM; Neri D; Scheuermann J
    Acc Chem Res; 2014 Apr; 47(4):1247-55. PubMed ID: 24673190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel selection methods for DNA-encoded chemical libraries.
    Chan AI; McGregor LM; Liu DR
    Curr Opin Chem Biol; 2015 Jun; 26():55-61. PubMed ID: 25723146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning from PAINful lessons.
    Erlanson DA
    J Med Chem; 2015 Mar; 58(5):2088-90. PubMed ID: 25710486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and screening of small-molecule α-helix mimetic libraries targeting protein-protein interactions.
    Moon H; Lim HS
    Curr Opin Chem Biol; 2015 Feb; 24():38-47. PubMed ID: 25461722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbohydrates in diversity-oriented synthesis: challenges and opportunities.
    Lenci E; Menchi G; Trabocchi A
    Org Biomol Chem; 2016 Jan; 14(3):808-25. PubMed ID: 26632306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fragment-based ligand discovery.
    Fischer M; Hubbard RE
    Mol Interv; 2009 Feb; 9(1):22-30. PubMed ID: 19299661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated Strategy for Lead Optimization Based on Fragment Growing: The Diversity-Oriented-Target-Focused-Synthesis Approach.
    Hoffer L; Voitovich YV; Raux B; Carrasco K; Muller C; Fedorov AY; Derviaux C; Amouric A; Betzi S; Horvath D; Varnek A; Collette Y; Combes S; Roche P; Morelli X
    J Med Chem; 2018 Jul; 61(13):5719-5732. PubMed ID: 29883107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent trends and observations in the design of high-quality screening collections.
    Renner S; Popov M; Schuffenhauer A; Roth HJ; Breitenstein W; Marzinzik A; Lewis I; Krastel P; Nigsch F; Jenkins J; Jacoby E
    Future Med Chem; 2011 Apr; 3(6):751-66. PubMed ID: 21554080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biased and unbiased strategies to identify biologically active small molecules.
    Abet V; Mariani A; Truscott FR; Britton S; Rodriguez R
    Bioorg Med Chem; 2014 Aug; 22(16):4474-89. PubMed ID: 24811300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules.
    Galloway WR; Isidro-Llobet A; Spring DR
    Nat Commun; 2010 Sep; 1():80. PubMed ID: 20865796
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bridging the gap between natural product synthesis and drug discovery.
    Truax NJ; Romo D
    Nat Prod Rep; 2020 Nov; 37(11):1436-1453. PubMed ID: 33104139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.
    Williams G; Ferenczy GG; Ulander J; Keserű GM
    Drug Discov Today; 2017 Apr; 22(4):681-689. PubMed ID: 27916639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.