These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 29651175)
1. Adaptive Strategies of Yik LY; Chin GJWL; Budiman C; Joseph CG; Musta B; Rodrigues KF Indian J Microbiol; 2018 Jun; 58(2):165-173. PubMed ID: 29651175 [TBL] [Abstract][Full Text] [Related]
2. Genomic data of two Low YY; Chin GJWL; Joseph CG; Musta B; Rodrigues KF Data Brief; 2020 Dec; 33():106486. PubMed ID: 33225029 [TBL] [Abstract][Full Text] [Related]
3. Whole genome sequencing of a multidrug-resistant Bacillus thuringiensis HM-311 obtained from the Radiation and Heavy metal-polluted soil. Zuo W; Li J; Zheng J; Zhang L; Yang Q; Yu Y; Zhang Z; Ding Q J Glob Antimicrob Resist; 2020 Jun; 21():275-277. PubMed ID: 32353525 [TBL] [Abstract][Full Text] [Related]
4. Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application. Sangkharak K; Prasertsan P J Gen Appl Microbiol; 2012; 58(3):173-82. PubMed ID: 22878735 [TBL] [Abstract][Full Text] [Related]
5. Production and characterization of PHB-HV copolymer by Bacillus thuringiensis isolated from Eisenia foetida. Ponnusamy S; Viswanathan S; Periyasamy A; Rajaiah S Biotechnol Appl Biochem; 2019 May; 66(3):340-352. PubMed ID: 30654427 [TBL] [Abstract][Full Text] [Related]
6. Recovery of Metals from Acid Mine Drainage by Bioelectrochemical System Inoculated with a Novel Exoelectrogen, Ai C; Hou S; Yan Z; Zheng X; Amanze C; Chai L; Qiu G; Zeng W Microorganisms; 2019 Dec; 8(1):. PubMed ID: 31878294 [TBL] [Abstract][Full Text] [Related]
7. Isolation and Genome Analysis of an Amoeba-Associated Bacterium Giddings LA; Kunstman K; Moumen B; Asiama L; Green S; Delafont V; Brockley M; Samba-Louaka A Front Microbiol; 2022; 13():856908. PubMed ID: 35677904 [TBL] [Abstract][Full Text] [Related]
8. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Zeng W; Li F; Wu C; Yu R; Wu X; Shen L; Liu Y; Qiu G; Li J Bioprocess Biosyst Eng; 2020 Jan; 43(1):153-167. PubMed ID: 31549306 [TBL] [Abstract][Full Text] [Related]
9. Spatial and temporal patterns of acidity and heavy metals in predicting the potential for ecological impact on the Le An river polluted by acid mine drainage. He M; Wang Z; Tang H Sci Total Environ; 1997 Oct; 206(1):67-77. PubMed ID: 9373991 [TBL] [Abstract][Full Text] [Related]
10. An investigation for recovery of polyhydroxyalkanoates (PHA) from Bacillus sp. BPPI-14 and Bacillus sp. BPPI-19 isolated from plastic waste landfill. Mohammed S; Panda AN; Ray L Int J Biol Macromol; 2019 Aug; 134():1085-1096. PubMed ID: 31129215 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil. Chong TM; Yin WF; Chen JW; Mondy S; Grandclément C; Faure D; Dessaux Y; Chan KG AMB Express; 2016 Dec; 6(1):95. PubMed ID: 27730570 [TBL] [Abstract][Full Text] [Related]
12. Metal-Adapted Bacteria Isolated From Wastewaters Produce Biofilms by Expressing Proteinaceous Curli Fimbriae and Cellulose Nanofibers. Mosharaf MK; Tanvir MZH; Haque MM; Haque MA; Khan MAA; Molla AH; Alam MZ; Islam MS; Talukder MR Front Microbiol; 2018; 9():1334. PubMed ID: 29988579 [TBL] [Abstract][Full Text] [Related]
13. Production and characterization of polyhydroxyalkanoic acid from Bacillus thuringiensis using different carbon substrates. Odeniyi OA; Adeola OJ Int J Biol Macromol; 2017 Nov; 104(Pt A):407-413. PubMed ID: 28619635 [TBL] [Abstract][Full Text] [Related]
14. Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential. Thomas T; Elain A; Bazire A; Bruzaud S World J Microbiol Biotechnol; 2019 Mar; 35(3):50. PubMed ID: 30852675 [TBL] [Abstract][Full Text] [Related]
16. Metabolic adaptation of a Chlamydomonas acidophila strain isolated from acid mine drainage ponds with low eukaryotic diversity. Dean AP; Hartley A; McIntosh OA; Smith A; Feord HK; Holmberg NH; King T; Yardley E; White KN; Pittman JK Sci Total Environ; 2019 Jan; 647():75-87. PubMed ID: 30077857 [TBL] [Abstract][Full Text] [Related]
17. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials. Cervantes ER; Torres MG; Muñoz SV; Rosas ER; Vázquez C; Talavera RR Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():614-21. PubMed ID: 26478352 [TBL] [Abstract][Full Text] [Related]
18. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. Van der Auwera GA; Andrup L; Mahillon J BMC Genomics; 2005 Jul; 6():103. PubMed ID: 16042811 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic potential of heterotrophic bacteria from a neutral copper mine drainage. Costa BZ; Rodrigues VD; Oliveira VM; Ottoboni LM; Marsaioli AJ Braz J Microbiol; 2016; 47(4):846-852. PubMed ID: 27522533 [TBL] [Abstract][Full Text] [Related]
20. New perspectives on Mega plasmid sequence (poh1) in Bacillus thuringiensis ATCC 10792 harbouring antimicrobial, insecticidal and antibiotic resistance genes. Chelliah R; Wei S; Park BJ; Park JH; Park YS; Kim SH; Jin YG; Oh DH Microb Pathog; 2019 Jan; 126():14-18. PubMed ID: 30326263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]