BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2965164)

  • 1. Lymphocytes expressing type 3 complement receptors proliferate in response to interleukin 2 and are the precursors of lymphokine-activated killer cells.
    Gray JD; Horwitz DA
    J Clin Invest; 1988 Apr; 81(4):1247-54. PubMed ID: 2965164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymphokine-activated killer activity induced by in vivo interleukin 2 therapy: predominant role for lymphocytes with increased expression of CD2 and leu19 antigens but negative expression of CD16 antigens.
    Weil-Hillman G; Fisch P; Prieve AF; Sosman JA; Hank JA; Sondel PM
    Cancer Res; 1989 Jul; 49(13):3680-8. PubMed ID: 2471587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human lymphokine-activated killer (LAK) cells: identification of two types of effector cells.
    Tilden AB; Itoh K; Balch CM
    J Immunol; 1987 Feb; 138(4):1068-73. PubMed ID: 3100627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of transforming growth factor-beta on human lymphokine-activated killer cell precursors. Autocrine inhibition of cellular proliferation and differentiation to immune killer cells.
    Kasid A; Bell GI; Director EP
    J Immunol; 1988 Jul; 141(2):690-8. PubMed ID: 3133414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human lymphokine-activated killer cells: further isolation and characterization of the precursor and effector cell.
    Skibber JM; Lotze MT; Muul LM; Uppenkamp IK; Ross W; Rosenberg SA
    Nat Immun Cell Growth Regul; 1987; 6(6):291-305. PubMed ID: 2896297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lymphokine-activated killer activity in long-term cultures with anti-CD3 plus interleukin 2: identification and isolation of effector subsets.
    Ochoa AC; Hasz DE; Rezonzew R; Anderson PM; Bach FH
    Cancer Res; 1989 Feb; 49(4):963-8. PubMed ID: 2521457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-gamma/delta+ T lymphocytes. I. Inhibition of the IL-2-dependent proliferation by anti-Kp43 monoclonal antibody.
    Aramburu J; Balboa MA; Ramírez A; Silva A; Acevedo A; Sánchez-Madrid F; De Landázuri MO; López-Botet M
    J Immunol; 1990 Apr; 144(8):3238-47. PubMed ID: 1691231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis.
    Robertson MJ; Caligiuri MA; Manley TJ; Levine H; Ritz J
    J Immunol; 1990 Nov; 145(10):3194-201. PubMed ID: 1700001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleukin-2 activated T cells (T-LAK) express CD16 antigen and are triggered to target cell lysis by bispecific antibody.
    Nitta T; Nakata M; Yagita H; Okumura K
    Immunol Lett; 1991 Apr; 28(1):31-7. PubMed ID: 1830029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic characterization of lymphokine-activated killer cells from human lymph node lymphocytes.
    Yano T; Murata M; Ishida T; Mitsudomi T; Kimura G; Sugimachi K; Nomoto K
    Cell Immunol; 1989 Sep; 122(2):578-84. PubMed ID: 2788522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the murine lymphokine-activated killer (LAK) cell phenomenon: dissection of effectors and progenitors into NK- and T-like cells.
    Kalland T; Belfrage H; Bhiladvala P; Hedlund G
    J Immunol; 1987 Jun; 138(11):3640-5. PubMed ID: 3495566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD8+CD11b+ peripheral blood T lymphocytes contain lymphokine-activated killer cell precursors.
    Dianzani U; Zarcone D; Pistoia V; Grossi CE; Pileri A; Massaia M; Ferrarini M
    Eur J Immunol; 1989 Jun; 19(6):1037-44. PubMed ID: 2502419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel CD56- lymphokine-activated killer cell precursor in cancer patients receiving recombinant interleukin 2.
    McKenzie RS; Simms PE; Helfrich BA; Fisher RI; Ellis TM
    Cancer Res; 1992 Nov; 52(22):6318-22. PubMed ID: 1384959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interleukin 2-activated human killer cells are derived from phenotypically heterogeneous precursors.
    Damle NK; Doyle LV; Bradley EC
    J Immunol; 1986 Nov; 137(9):2814-22. PubMed ID: 2944965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD56bright natural killer cell subsets: characterization of distinct functional responses to interleukin-2 and the c-kit ligand.
    Carson WE; Fehniger TA; Caligiuri MA
    Eur J Immunol; 1997 Feb; 27(2):354-60. PubMed ID: 9045904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lymphokine-activated killer cells in rats: analysis of progenitor and effector cell phenotype and relationship to natural killer cells.
    Vujanovic NL; Herberman RB; Olszowy MW; Cramer DV; Salup RR; Reynolds CW; Hiserodt JC
    Cancer Res; 1988 Feb; 48(4):884-90. PubMed ID: 3257412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence and cytotoxicity of CD16+ CD2- subset from PBL and NK cells in long-term IL-2 cultures enhanced by Prothymosin-alpha.
    Cordero OJ; Sarandeses C; López-Rodríguez JL; Nogueira M
    Immunopharmacology; 1995 Apr; 29(3):215-23. PubMed ID: 7542644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymphokine-activated killer cells in rats. IV. Developmental relationships among large agranular lymphocytes, large granular lymphocytes, and lymphokine-activated killer cells.
    Maghazachi AA; Vujanovic NL; Herberman RB; Hiserodt JC
    J Immunol; 1988 Apr; 140(8):2846-52. PubMed ID: 3258622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of lymphokine-activated killer cell activity from human thymocytes.
    Ramsdell FJ; Golub SH
    J Immunol; 1987 Sep; 139(5):1446-53. PubMed ID: 2442246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro assays to study role of T cell-derived factors on human B lymphocytes should take into consideration inhibiting effect of large granular lymphocyte subset (CD5-,CD16+) that can contaminate B cell preparations.
    Lobo PI; Wright AE
    J Immunol Methods; 1988 Dec; 115(2):239-46. PubMed ID: 3264313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.