These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 29651714)
1. Learning-based endovascular navigation through the use of non-rigid registration for collaborative robotic catheterization. Chi W; Liu J; Rafii-Tari H; Riga C; Bicknell C; Yang GZ Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):855-864. PubMed ID: 29651714 [TBL] [Abstract][Full Text] [Related]
3. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study. Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735 [TBL] [Abstract][Full Text] [Related]
4. A linear stepping endovascular intervention robot with variable stiffness and force sensing. He C; Wang S; Zuo S Int J Comput Assist Radiol Surg; 2018 May; 13(5):671-682. PubMed ID: 29520525 [TBL] [Abstract][Full Text] [Related]
5. The role of robotic endovascular catheters in fenestrated stent grafting. Riga CV; Cheshire NJ; Hamady MS; Bicknell CD J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674 [TBL] [Abstract][Full Text] [Related]
6. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair. de Ruiter QM; Moll FL; van Herwaarden JA J Vasc Surg; 2015 Jan; 61(1):256-64. PubMed ID: 25441011 [TBL] [Abstract][Full Text] [Related]
7. Catheter manipulation analysis for objective performance and technical skills assessment in transcatheter aortic valve implantation. Mazomenos EB; Chang PL; Rippel RA; Rolls A; Hawkes DJ; Bicknell CD; Desjardins A; Riga CV; Stoyanov D Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1121-31. PubMed ID: 27072837 [TBL] [Abstract][Full Text] [Related]
8. Flexible robotics with electromagnetic tracking improves safety and efficiency during in vitro endovascular navigation. Schwein A; Kramer B; Chinnadurai P; Walker S; O'Malley M; Lumsden A; Bismuth J J Vasc Surg; 2017 Feb; 65(2):530-537. PubMed ID: 26994950 [TBL] [Abstract][Full Text] [Related]
9. Reducing contact forces in the arch and supra-aortic vessels using the Magellan robot. Rafii-Tari H; Riga CV; Payne CJ; Hamady MS; Cheshire NJ; Bicknell CD; Yang GZ J Vasc Surg; 2016 Nov; 64(5):1422-1432. PubMed ID: 26386511 [TBL] [Abstract][Full Text] [Related]
10. Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures. Cochennec F; Kobeiter H; Gohel M; Marzelle J; Desgranges P; Allaire E; Becquemin JP J Endovasc Ther; 2015 Apr; 22(2):187-93. PubMed ID: 25809359 [TBL] [Abstract][Full Text] [Related]
11. Value of C-Arm Cone Beam Computed Tomography Image Fusion in Maximizing the Versatility of Endovascular Robotics. Chinnadurai P; Duran C; Al-Jabbari O; Abu Saleh WK; Lumsden A; Bismuth J Ann Vasc Surg; 2016 Jan; 30():138-48. PubMed ID: 26256704 [TBL] [Abstract][Full Text] [Related]
12. An MR-Safe Endovascular Robotic Platform: Design, Control, and Ex-Vivo Evaluation. Kundrat D; Dagnino G; Kwok TMY; Abdelaziz MEMK; Chi W; Nguyen A; Riga C; Yang GZ IEEE Trans Biomed Eng; 2021 Oct; 68(10):3110-3121. PubMed ID: 33705306 [TBL] [Abstract][Full Text] [Related]
14. Learning-based modeling of endovascular navigation for collaborative robotic catheterization. Rafii-Tari H; Liu J; Lee SL; Bicknell C; Yang GZ Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):369-77. PubMed ID: 24579162 [TBL] [Abstract][Full Text] [Related]
15. Tortuous iliac systems--a significant burden to conventional cannulation in the visceral segment: is there a role for robotic catheter technology? Riga CV; Bicknell CD; Hamady M; Cheshire N J Vasc Interv Radiol; 2012 Oct; 23(10):1369-75. PubMed ID: 22920731 [TBL] [Abstract][Full Text] [Related]
16. Comparison of manual versus robot-assisted contralateral gate cannulation in patients undergoing endovascular aneurysm repair. Cheung S; Rahman R; Bicknell C; Stoyanov D; Chang PL; Li M; Rolls A; Desender L; Van Herzeele I; Hamady M; Riga C Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2071-2078. PubMed ID: 33070273 [TBL] [Abstract][Full Text] [Related]
17. The use of robotic endovascular catheters in the facilitation of transcatheter aortic valve implantation. Rippel RA; Rolls AE; Riga CV; Hamady M; Cheshire NJ; Bicknell CD Eur J Cardiothorac Surg; 2014 May; 45(5):836-41. PubMed ID: 24296984 [TBL] [Abstract][Full Text] [Related]
18. An assembly-type master-slave catheter and guidewire driving system for vascular intervention. Cha HJ; Yi BJ; Won JY Proc Inst Mech Eng H; 2017 Jan; 231(1):69-79. PubMed ID: 28097937 [TBL] [Abstract][Full Text] [Related]
19. Robotically-steerable catheters and their role in the visceral aortic segment. Riga C; Bicknell C; Hamady MS; Cheshire NJ J Cardiovasc Surg (Torino); 2011 Jun; 52(3):353-62. PubMed ID: 21577190 [TBL] [Abstract][Full Text] [Related]
20. Advanced catheter technology: is this the answer to overcoming the long learning curve in complex endovascular procedures. Riga CV; Bicknell CD; Sidhu R; Cochennec F; Normahani P; Chadha P; Kashef E; Hamady M; Cheshire NJ Eur J Vasc Endovasc Surg; 2011 Oct; 42(4):531-8. PubMed ID: 21388839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]