BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29651845)

  • 41. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions.
    Toews J; Rogalski JC; Clark TJ; Kast J
    Anal Chim Acta; 2008 Jun; 618(2):168-83. PubMed ID: 18513538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA-protein crosslink formation by endogenous aldehydes and AP sites.
    Nakamura J; Nakamura M
    DNA Repair (Amst); 2020 Apr; 88():102806. PubMed ID: 32070903
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A method for the isolation of covalent DNA-protein crosslinks suitable for proteomics analysis.
    Barker S; Murray D; Zheng J; Li L; Weinfeld M
    Anal Biochem; 2005 Sep; 344(2):204-15. PubMed ID: 16091282
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a method for quantification of acrolein-deoxyguanosine adducts in DNA using isotope dilution-capillary LC/MS/MS and its application to human brain tissue.
    Liu X; Lovell MA; Lynn BC
    Anal Chem; 2005 Sep; 77(18):5982-9. PubMed ID: 16159131
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [A comparison between the effects on DNA-protein cross-links of Saccharomyces and E. coli induced by formaldehyde].
    Gan Y; Xu Q; Peng G; Wu K; Liu KY
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):164-7. PubMed ID: 17436646
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation of DNA-protein cross-link formation between lysozyme and oxanine by mass spectrometry.
    Chen HJ; Chiu WL; Lin WP; Yang SS
    Chembiochem; 2008 May; 9(7):1074-81. PubMed ID: 18351683
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The "adductome": A limited repertoire of adducted proteins in human cells.
    Kiianitsa K; Maizels N
    DNA Repair (Amst); 2020 May; 89():102825. PubMed ID: 32109764
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Covalent DNA-Protein Cross-Linking by Phosphoramide Mustard and Nornitrogen Mustard in Human Cells.
    Groehler A; Villalta PW; Campbell C; Tretyakova N
    Chem Res Toxicol; 2016 Feb; 29(2):190-202. PubMed ID: 26692166
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectroscopic characterization of interstrand carbinolamine cross-links formed in the 5'-CpG-3' sequence by the acrolein-derived gamma-OH-1,N2-propano-2'-deoxyguanosine DNA adduct.
    Cho YJ; Kim HY; Huang H; Slutsky A; Minko IG; Wang H; Nechev LV; Kozekov ID; Kozekova A; Tamura P; Jacob J; Voehler M; Harris TM; Lloyd RS; Rizzo CJ; Stone MP
    J Am Chem Soc; 2005 Dec; 127(50):17686-96. PubMed ID: 16351098
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative determination of azacitidine triphosphate in peripheral blood mononuclear cells using liquid chromatography coupled with high-resolution mass spectrometry.
    Derissen EJ; Hillebrand MJ; Rosing H; Otten HM; Laille E; Schellens JH; Beijnen JH
    J Pharm Biomed Anal; 2014 Mar; 90():7-14. PubMed ID: 24317024
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stereochemistry modulates the stability of reduced interstrand cross-links arising from R- and S-alpha-CH3-gamma-OH-1,N2-propano-2'-deoxyguanosine in the 5'-CpG-3' DNA sequence.
    Cho YJ; Kozekov ID; Harris TM; Rizzo CJ; Stone MP
    Biochemistry; 2007 Mar; 46(10):2608-21. PubMed ID: 17305317
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formaldehyde cross-linking and structural proteomics: Bridging the gap.
    Srinivasa S; Ding X; Kast J
    Methods; 2015 Nov; 89():91-8. PubMed ID: 25979347
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mass spectrometric analysis of 2-deoxyribonucleoside and 2'-deoxyribonucleotide adducts with aldehydes derived from lipid peroxidation.
    Doerge DR; Yi P; Churchwell MI; Preece SW; Langridge J; Fu PP
    Rapid Commun Mass Spectrom; 1998; 12(22):1665-72. PubMed ID: 9853382
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Orientation of the crotonaldehyde-derived N2-[3-Oxo-1(S)-methyl-propyl]-dG DNA adduct hinders interstrand cross-link formation in the 5'-CpG-3' sequence.
    Cho YJ; Wang H; Kozekov ID; Kozekova A; Kurtz AJ; Jacob J; Voehler M; Smith J; Harris TM; Rizzo CJ; Lloyd RS; Stone MP
    Chem Res Toxicol; 2006 Aug; 19(8):1019-29. PubMed ID: 16918240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation and repair of DNA-protein crosslink damage.
    Klages-Mundt NL; Li L
    Sci China Life Sci; 2017 Oct; 60(10):1065-1076. PubMed ID: 29098631
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ; Young MM; Takemoto LJ
    Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A blotting method for monitoring the formation of chemically induced DNA-protein complexes.
    Cohen MD; Miller CA; Xu LS; Snow ET; Costa M
    Anal Biochem; 1990 Apr; 186(1):1-7. PubMed ID: 2356961
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and dynamics of dark-state bovine rhodopsin revealed by chemical cross-linking and high-resolution mass spectrometry.
    Jacobsen RB; Sale KL; Ayson MJ; Novak P; Hong J; Lane P; Wood NL; Kruppa GH; Young MM; Schoeniger JS
    Protein Sci; 2006 Jun; 15(6):1303-17. PubMed ID: 16731966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Collision-induced dissociative chemical cross-linking reagents and methodology: Applications to protein structural characterization using tandem mass spectrometry analysis.
    Soderblom EJ; Goshe MB
    Anal Chem; 2006 Dec; 78(23):8059-68. PubMed ID: 17134140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Variable termination sites of DNA polymerases encountering a DNA-protein cross-link.
    Yudkina AV; Dvornikova AP; Zharkov DO
    PLoS One; 2018; 13(6):e0198480. PubMed ID: 29856874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.