These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29652050)

  • 1. Long-term C. elegans immobilization enables high resolution developmental studies in vivo.
    Berger S; Lattmann E; Aegerter-Wilmsen T; Hengartner M; Hajnal A; deMello A; Casadevall i Solvas X
    Lab Chip; 2018 May; 18(9):1359-1368. PubMed ID: 29652050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic-based imaging of complete Caenorhabditis elegans larval development.
    Berger S; Spiri S; deMello A; Hajnal A
    Development; 2021 Jul; 148(18):. PubMed ID: 34170296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies.
    Krajniak J; Lu H
    Lab Chip; 2010 Jul; 10(14):1862-8. PubMed ID: 20461264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans.
    Cornaglia M; Lehnert T; Gijs MAM
    Lab Chip; 2017 Nov; 17(22):3736-3759. PubMed ID: 28840220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A droplet microchip with substance exchange capability for the developmental study of C. elegans.
    Wen H; Yu Y; Zhu G; Jiang L; Qin J
    Lab Chip; 2015 Apr; 15(8):1905-11. PubMed ID: 25715864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo.
    Zhao X; Xu F; Tang L; Du W; Feng X; Liu BF
    Biosens Bioelectron; 2013 Dec; 50():28-34. PubMed ID: 23831644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish.
    Mondal S; Ahlawat S; Koushika SP
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic diode for sorting and immobilization of Caenorhabditis elegans.
    Yang L; Hong T; Zhang Y; Arriola JGS; Nelms BL; Mu R; Li D
    Biomed Microdevices; 2017 Jun; 19(2):38. PubMed ID: 28466284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Devices in Advanced Caenorhabditis elegans Research.
    Muthaiyan Shanmugam M; Subhra Santra T
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27490525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans.
    Aubry G; Zhan M; Lu H
    Lab Chip; 2015 Mar; 15(6):1424-31. PubMed ID: 25622546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WormSpace
    Yang Q; Zhong R; Chang W; Chen K; Wang M; Yuan S; Liang Z; Wang W; Wang C; Tong G; Zhang T; Sun Y
    Lab Chip; 2024 Jul; 24(14):3388-3402. PubMed ID: 38818738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip functional neuroimaging with mechanical stimulation in Caenorhabditis elegans larvae for studying development and neural circuits.
    Cho Y; Oakland DN; Lee SA; Schafer WR; Lu H
    Lab Chip; 2018 Feb; 18(4):601-609. PubMed ID: 29340386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing.
    Desta IT; Al-Sharif A; AlGharibeh N; Mustafa N; Orozaliev A; Giakoumidis N; Gunsalus KC; Song YA
    SLAS Technol; 2017 Aug; 22(4):431-436. PubMed ID: 27630097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel microfluidic capture and monitoring method for assessing physiological damage of C. elegans under microgravity.
    Wang J; Meng J; Ding G; Kang Y; Zhao W
    Electrophoresis; 2019 Mar; 40(6):922-929. PubMed ID: 30597589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Microfluidic Platform for Longitudinal Imaging in Caenorhabditis elegans.
    Lee KS; Levine E
    J Vis Exp; 2018 May; (135):. PubMed ID: 29782012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Platform for Long-Term Culture and High-Content Phenotyping of Single C. elegans Worms.
    Atakan HB; Xiang R; Cornaglia M; Mouchiroud L; Katsyuba E; Auwerx J; Gijs MAM
    Sci Rep; 2019 Oct; 9(1):14340. PubMed ID: 31586133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-flow C. elegans fluorescence expression analysis with real-time image processing through microfluidics.
    Yan Y; Boey D; Ng LT; Gruber J; Bettiol A; Thakor NV; Chen CH
    Biosens Bioelectron; 2016 Mar; 77():428-34. PubMed ID: 26452079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time monitoring of immune responses under pathogen invasion and drug interference by integrated microfluidic device coupled with worm-based biosensor.
    Hu L; Ge A; Wang X; Wang S; Yue X; Wang J; Feng X; Du W; Liu BF
    Biosens Bioelectron; 2018 Jul; 110():233-238. PubMed ID: 29625331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C.L.I.P.--continuous live imaging platform for direct observation of C. elegans physiological processes.
    Krajniak J; Hao Y; Mak HY; Lu H
    Lab Chip; 2013 Aug; 13(15):2963-71. PubMed ID: 23708469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Simple Apparatus for Individual C. elegans Culture.
    Pittman WE; Sinha DB; Kinser HE; Patil NS; Terry ES; Plutzer IB; Hong J; Pincus Z
    Methods Mol Biol; 2020; 2144():29-45. PubMed ID: 32410022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.