These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 29652050)
21. A microfluidic device for efficient chemical testing using Caenorhabditis elegans. Song P; Zhang W; Sobolevski A; Bernard K; Hekimi S; Liu X Biomed Microdevices; 2015 Apr; 17(2):38. PubMed ID: 25744157 [TBL] [Abstract][Full Text] [Related]
22. An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans. Chokshi TV; Bazopoulou D; Chronis N Lab Chip; 2010 Oct; 10(20):2758-63. PubMed ID: 20820480 [TBL] [Abstract][Full Text] [Related]
23. Immobilization of Live Caenorhabditis elegans Individuals Using an Ultra-thin Polydimethylsiloxane Microfluidic Chip with Water Retention. Suzuki M; Sakashita T; Funayama T J Vis Exp; 2019 Mar; (145):. PubMed ID: 30958474 [TBL] [Abstract][Full Text] [Related]
24. Tracking Germline Stem Cell Dynamics In Vivo in C. elegans Using Photoconversion. Rosu S; Cohen-Fix O Methods Mol Biol; 2020; 2150():11-23. PubMed ID: 30989507 [TBL] [Abstract][Full Text] [Related]
25. Long-Term High-Resolution Imaging of Developing C. elegans Larvae with Microfluidics. Keil W; Kutscher LM; Shaham S; Siggia ED Dev Cell; 2017 Jan; 40(2):202-214. PubMed ID: 28041904 [TBL] [Abstract][Full Text] [Related]
26. A fully automated microfluidic femtosecond laser axotomy platform for nerve regeneration studies in C. elegans. Gokce SK; Guo SX; Ghorashian N; Everett WN; Jarrell T; Kottek A; Bovik AC; Ben-Yakar A PLoS One; 2014; 9(12):e113917. PubMed ID: 25470130 [TBL] [Abstract][Full Text] [Related]
27. Development of ultra-thin chips for immobilization of Caenorhabditis elegans in microfluidic channels during irradiation and selection of buffer solution to prevent dehydration. Suzuki M; Sakashita T; Hattori Y; Yokota Y; Kobayashi Y; Funayama T J Neurosci Methods; 2018 Aug; 306():32-37. PubMed ID: 29859879 [TBL] [Abstract][Full Text] [Related]
28. Microfluidic platform with spatiotemporally controlled micro-environment for studying long-term C. elegans developmental arrests. Zhuo W; Lu H; McGrath PT Lab Chip; 2017 May; 17(10):1826-1833. PubMed ID: 28466940 [TBL] [Abstract][Full Text] [Related]
30. Conditional immobilization for live imaging Caenorhabditis elegans using auxin-dependent protein depletion. Cahoon CK; Libuda DE G3 (Bethesda); 2021 Oct; 11(11):. PubMed ID: 34534266 [TBL] [Abstract][Full Text] [Related]
31. Quantitative fluorescence imaging of mitochondria in body wall muscles of Caenorhabditis elegans under hyperglycemic conditions using a microfluidic chip. Sofela S; Sahloul S; Bhattacharjee S; Bose A; Usman U; Song YA Integr Biol (Camb); 2020 Jun; 12(6):150-160. PubMed ID: 32510148 [TBL] [Abstract][Full Text] [Related]
32. Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools. Dutta P; Lehmann C; Odedra D; Singh D; Pohl C J Vis Exp; 2015 Dec; (106):e53469. PubMed ID: 26709526 [TBL] [Abstract][Full Text] [Related]
33. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device. Hu L; Ye J; Tan H; Ge A; Tang L; Feng X; Du W; Liu BF Anal Chim Acta; 2015 Aug; 887():155-162. PubMed ID: 26320797 [TBL] [Abstract][Full Text] [Related]
34. Live imaging of cellular dynamics during Caenorhabditis elegans postembryonic development. Chai Y; Li W; Feng G; Yang Y; Wang X; Ou G Nat Protoc; 2012 Dec; 7(12):2090-102. PubMed ID: 23138350 [TBL] [Abstract][Full Text] [Related]
35. Long-term time-lapse microscopy of C. elegans post-embryonic development. Gritti N; Kienle S; Filina O; van Zon JS Nat Commun; 2016 Aug; 7():12500. PubMed ID: 27558523 [TBL] [Abstract][Full Text] [Related]
36. Worm chips: microtools for C. elegans biology. Chronis N Lab Chip; 2010 Feb; 10(4):432-7. PubMed ID: 20126682 [TBL] [Abstract][Full Text] [Related]
37. An Automated Microfluidic System for Morphological Measurement and Size-Based Sorting of C. Elegans. Dong X; Song P; Liu X IEEE Trans Nanobioscience; 2019 Jul; 18(3):373-380. PubMed ID: 30869628 [TBL] [Abstract][Full Text] [Related]
38. Reversible and long-term immobilization in a hydrogel-microbead matrix for high-resolution imaging of Caenorhabditis elegans and other small organisms. Dong L; Cornaglia M; Krishnamani G; Zhang J; Mouchiroud L; Lehnert T; Auwerx J; Gijs MAM PLoS One; 2018; 13(3):e0193989. PubMed ID: 29509812 [TBL] [Abstract][Full Text] [Related]
39. A simple culture system for long-term imaging of individual C. elegans. Pittman WE; Sinha DB; Zhang WB; Kinser HE; Pincus Z Lab Chip; 2017 Nov; 17(22):3909-3920. PubMed ID: 29063084 [TBL] [Abstract][Full Text] [Related]
40. Developmental abnormality induced by strong static magnetic field in Caenorhabditis elegans. Wang L; Du H; Guo X; Wang X; Wang M; Wang Y; Wang M; Chen S; Wu L; Xu A Bioelectromagnetics; 2015 Apr; 36(3):178-89. PubMed ID: 25754967 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]