BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 29652263)

  • 1. X-ray and UV radiation-damage-induced phasing using synchrotron serial crystallography.
    Foos N; Seuring C; Schubert R; Burkhardt A; Svensson O; Meents A; Chapman HN; Nanao MH
    Acta Crystallogr D Struct Biol; 2018 Apr; 74(Pt 4):366-378. PubMed ID: 29652263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.
    Cohen AE; Doukov T; Soltis MS
    Protein Pept Lett; 2016; 23(3):283-90. PubMed ID: 26740326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phasing macromolecular structures with UV-induced structural changes.
    Nanao MH; Ravelli RB
    Structure; 2006 Apr; 14(4):791-800. PubMed ID: 16615919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Crystallographic Data Collection Protocols for Experimental Phasing.
    Finke AD; Panepucci E; Vonrhein C; Wang M; Bricogne G; Oliéric V
    Methods Mol Biol; 2016; 1320():175-91. PubMed ID: 26227043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical Radiation Damage-Induced Phasing.
    Zubieta C; Nanao MH
    Methods Mol Biol; 2016; 1320():205-18. PubMed ID: 26227045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation damage to biological samples: still a pertinent issue.
    Garman EF; Weik M
    J Synchrotron Radiat; 2021 Sep; 28(Pt 5):1278-1283. PubMed ID: 34475277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beam-size effects in radiation damage in insulin and thaumatin crystals.
    Schulze-Briese C; Wagner A; Tomizaki T; Oetiker M
    J Synchrotron Radiat; 2005 May; 12(Pt 3):261-7. PubMed ID: 15840909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation Damage in Macromolecular Crystallography.
    Garman EF; Weik M
    Methods Mol Biol; 2017; 1607():467-489. PubMed ID: 28573586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vacuum long-wavelength macromolecular crystallography.
    Wagner A; Duman R; Henderson K; Mykhaylyk V
    Acta Crystallogr D Struct Biol; 2016 Mar; 72(Pt 3):430-9. PubMed ID: 26960130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential specific radiation damage in the Cu II-bound and Pd II-bound forms of an alpha-helical foldamer: a case study of crystallographic phasing by RIP and SAD.
    Fütterer K; Ravelli RB; White SA; Nicoll AJ; Allemann RK
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):264-72. PubMed ID: 18323621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guidelines for de novo phasing using multiple small-wedge data collection.
    Baba S; Matsuura H; Kawamura T; Sakai N; Nakamura Y; Kawano Y; Mizuno N; Kumasaka T; Yamamoto M; Hirata K
    J Synchrotron Radiat; 2021 Sep; 28(Pt 5):1284-1295. PubMed ID: 34475278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges of sulfur SAD phasing as a routine method in macromolecular crystallography.
    Doutch J; Hough MA; Hasnain SS; Strange RW
    J Synchrotron Radiat; 2012 Jan; 19(Pt 1):19-29. PubMed ID: 22186640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams.
    Botha S; Nass K; Barends TR; Kabsch W; Latz B; Dworkowski F; Foucar L; Panepucci E; Wang M; Shoeman RL; Schlichting I; Doak RB
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):387-97. PubMed ID: 25664750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instrumentation for synchrotron-radiation macromolecular crystallography.
    Girard E; Legrand P; Roudenko O; Roussier L; Gourhant P; Gibelin J; Dalle D; Ounsy M; Thompson AW; Svensson O; Cordier MO; Robin S; Quiniou R; Steyer JP
    Acta Crystallogr D Biol Crystallogr; 2006 Jan; 62(Pt 1):12-8. PubMed ID: 16369089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of SAD and two-wavelength MAD phasing for radiation-damaged Se-MET crystals.
    González A
    J Synchrotron Radiat; 2007 Jan; 14(Pt 1):43-50. PubMed ID: 17211071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation damage in macromolecular cryocrystallography.
    Ravelli RB; Garman EF
    Curr Opin Struct Biol; 2006 Oct; 16(5):624-9. PubMed ID: 16938450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-dose fixed-target serial synchrotron crystallography.
    Owen RL; Axford D; Sherrell DA; Kuo A; Ernst OP; Schulz EC; Miller RJ; Mueller-Werkmeister HM
    Acta Crystallogr D Struct Biol; 2017 Apr; 73(Pt 4):373-378. PubMed ID: 28375148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography.
    Foadi J; Aller P; Alguel Y; Cameron A; Axford D; Owen RL; Armour W; Waterman DG; Iwata S; Evans G
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1617-32. PubMed ID: 23897484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryocooling and radiation damage in macromolecular crystallography.
    Garman EF; Owen RL
    Acta Crystallogr D Biol Crystallogr; 2006 Jan; 62(Pt 1):32-47. PubMed ID: 16369092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards an understanding of radiation damage in cryocooled macromolecular crystals.
    Nave C; Garman EF
    J Synchrotron Radiat; 2005 May; 12(Pt 3):257-60. PubMed ID: 15840908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.