These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29652379)

  • 41. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors.
    Zhang Z; Luo L; Xue C; Zhang W; Yan S
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164101
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface.
    Lu X; Zhang T; Wan R; Xu Y; Zhao C; Guo S
    Opt Express; 2018 Apr; 26(8):10179-10187. PubMed ID: 29715958
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fano Resonance-Based Blood Plasma Monitoring and Sensing using Plasmonic Nanomatryoshka.
    Pathania P; Shishodia MS
    Plasmonics; 2021; 16(6):2117-2124. PubMed ID: 34131417
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities.
    Li J; Chen J; Liu X; Tian H; Wang J; Cui J; Rohimah S
    Appl Opt; 2021 Jun; 60(18):5312-5319. PubMed ID: 34263768
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microstructured optical fiber for multichannel sensing based on Fano resonance of the whispering gallery modes.
    Lin W; Zhang H; Chen SC; Liu B; Liu YG
    Opt Express; 2017 Jan; 25(2):994-1004. PubMed ID: 28157993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple Fano-Like MIM Plasmonic Structure Based on Triangular Resonator for Refractive Index Sensing.
    Jankovic N; Cselyuszka N
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A graphene based tunable terahertz sensor with double Fano resonances.
    Zhang Y; Li T; Zeng B; Zhang H; Lv H; Huang X; Zhang W; Azad AK
    Nanoscale; 2015 Aug; 7(29):12682-8. PubMed ID: 26148569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Research on Fano Resonance Sensing Characteristics Based on Racetrack Resonant Cavity.
    Yu Y; Cui J; Liu G; Zhao R; Zhu M; Zhang G; Zhang W
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832771
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing.
    Liang Y; Peng W; Li L; Qian S; Wang Q
    Opt Lett; 2015 Aug; 40(16):3909-12. PubMed ID: 26274691
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.
    Ahmadivand A; Pala N
    Appl Spectrosc; 2015; 69(2):277-86. PubMed ID: 25587712
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures.
    Zhang J; Zayats A
    Opt Express; 2013 Apr; 21(7):8426-36. PubMed ID: 23571932
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings.
    Liu SD; Yang Z; Liu RP; Li XY
    ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Independently tunable Fano resonances in a metal-insulator-metal coupled cavities system.
    Chen Y; Chen L; Wen K; Hu Y; Lin W
    Appl Opt; 2020 Feb; 59(5):1484-1490. PubMed ID: 32225407
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications.
    Rohimah S; Tian H; Wang J; Chen J; Li J; Liu X; Cui J; Hao Y
    Appl Opt; 2022 Feb; 61(6):1275-1283. PubMed ID: 35201006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sharp Fano resonance induced by a single layer of nanorods with perturbed periodicity.
    Song M; Yu H; Wang C; Yao N; Pu M; Luo J; Zhang Z; Luo X
    Opt Express; 2015 Feb; 23(3):2895-903. PubMed ID: 25836151
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach.
    Butet J; Martin OJ
    Nanoscale; 2014 Dec; 6(24):15262-70. PubMed ID: 25381752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Sensitivity Sensing in All-Dielectric Metasurface Driven by Quasi-Bound States in the Continuum.
    Jing Z; Jiaxian W; Lizhen G; Weibin Q
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770466
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High Sensitivity Plasmonic Sensor Based on Fano Resonance with Inverted U-Shaped Resonator.
    Xiao G; Xu Y; Yang H; Ou Z; Chen J; Li H; Liu X; Zeng L; Li J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562255
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO
    He Z; Xue W; Cui W; Li C; Li Z; Pu L; Feng J; Xiao X; Wang X; Li AG
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32260584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.