These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 29652503)
1. Red/Green Color Tuning of Visual Rhodopsins: Electrostatic Theory Provides a Quantitative Explanation. Collette F; Renger T; Müh F; Schmidt Am Busch M J Phys Chem B; 2018 May; 122(18):4828-4837. PubMed ID: 29652503 [TBL] [Abstract][Full Text] [Related]
2. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra. Kloppmann E; Becker T; Ullmann GM Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786 [TBL] [Abstract][Full Text] [Related]
3. Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima. Shtyrov AA; Nikolaev DM; Mironov VN; Vasin AV; Panov MS; Tveryanovich YS; Ryazantsev MN Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809708 [TBL] [Abstract][Full Text] [Related]
4. Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. Chan T; Lee M; Sakmar TP J Biol Chem; 1992 May; 267(14):9478-80. PubMed ID: 1577792 [TBL] [Abstract][Full Text] [Related]
5. Building a model of the blue cone pigment based on the wild type rhodopsin structure with QM/MM methods. Frähmcke JS; Wanko M; Elstner M J Phys Chem B; 2012 Mar; 116(10):3313-21. PubMed ID: 22332756 [TBL] [Abstract][Full Text] [Related]
6. Importance of alanine at position 178 in proteorhodopsin for absorption of prevalent ambient light in the marine environment. Yamada K; Kawanabe A; Kandori H Biochemistry; 2010 Mar; 49(11):2416-23. PubMed ID: 20170125 [TBL] [Abstract][Full Text] [Related]
7. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family. Terakita A; Yamashita T; Shichida Y Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14263-7. PubMed ID: 11106382 [TBL] [Abstract][Full Text] [Related]
8. Rhodopsin from the fish, Astyanax: role of tyrosine 261 in the red shift. Yokoyama R; Knox BE; Yokoyama S Invest Ophthalmol Vis Sci; 1995 Apr; 36(5):939-45. PubMed ID: 7706043 [TBL] [Abstract][Full Text] [Related]
9. A Novel Color Switch of Microbial Rhodopsin. Sugiura M; Singh M; Tsunoda SP; Kandori H Biochemistry; 2023 Jul; 62(13):2013-2020. PubMed ID: 37352141 [TBL] [Abstract][Full Text] [Related]
10. The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution. Coto PB; Strambi A; Ferré N; Olivucci M Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17154-9. PubMed ID: 17090682 [TBL] [Abstract][Full Text] [Related]
11. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates. Devine EL; Theobald DL; Oprian DD Biochemistry; 2016 Aug; 55(34):4864-70. PubMed ID: 27486845 [TBL] [Abstract][Full Text] [Related]
12. An Average Solvent Electrostatic Configuration Protocol for QM/MM Free Energy Optimization: Implementation and Application to Rhodopsin Systems. Orozco-Gonzalez Y; Manathunga M; Marín MDC; Agathangelou D; Jung KH; Melaccio F; Ferré N; Haacke S; Coutinho K; Canuto S; Olivucci M J Chem Theory Comput; 2017 Dec; 13(12):6391-6404. PubMed ID: 29112449 [TBL] [Abstract][Full Text] [Related]
13. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct. Yan EC; Ganim Z; Kazmi MA; Chang BS; Sakmar TP; Mathies RA Biochemistry; 2004 Aug; 43(34):10867-76. PubMed ID: 15323547 [TBL] [Abstract][Full Text] [Related]
14. Deciphering the Spectral Tuning Mechanism in Proteorhodopsin: The Dominant Role of Electrostatics Instead of Chromophore Geometry. Church JR; Amoyal GS; Borin VA; Adam S; Olsen JMH; Schapiro I Chemistry; 2022 May; 28(28):e202200139. PubMed ID: 35307890 [TBL] [Abstract][Full Text] [Related]
16. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. Kuwayama S; Imai H; Morizumi T; Shichida Y Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246 [TBL] [Abstract][Full Text] [Related]
17. Color-changing mutation in the E-F loop of proteorhodopsin. Yoshitsugu M; Yamada J; Kandori H Biochemistry; 2009 May; 48(20):4324-30. PubMed ID: 19334675 [TBL] [Abstract][Full Text] [Related]
18. Functional analysis of the second extracellular loop of rhodopsin by characterizing split variants. Sakai K; Imamoto Y; Yamashita T; Shichida Y Photochem Photobiol Sci; 2010 Nov; 9(11):1490-7. PubMed ID: 20886156 [TBL] [Abstract][Full Text] [Related]
19. Pro219 is an electrostatic color determinant in the light-driven sodium pump KR2. Nakajima Y; Pedraza-González L; Barneschi L; Inoue K; Olivucci M; Kandori H Commun Biol; 2021 Oct; 4(1):1185. PubMed ID: 34645937 [TBL] [Abstract][Full Text] [Related]
20. Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: on the role of counterion quenching. Tomasello G; Olaso-González G; Altoè P; Stenta M; Serrano-Andrés L; Merchán M; Orlandi G; Bottoni A; Garavelli M J Am Chem Soc; 2009 Apr; 131(14):5172-86. PubMed ID: 19309158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]