These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29652791)

  • 41. LigDockCSA: protein-ligand docking using conformational space annealing.
    Shin WH; Heo L; Lee J; Ko J; Seok C; Lee J
    J Comput Chem; 2011 Nov; 32(15):3226-32. PubMed ID: 21837636
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FWAVina: A novel optimization algorithm for protein-ligand docking based on the fireworks algorithm.
    Li J; Song Y; Li F; Zhang H; Liu W
    Comput Biol Chem; 2020 Oct; 88():107363. PubMed ID: 32861160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm.
    Chang DT; Oyang YJ; Lin JH
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W233-8. PubMed ID: 15991337
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast docking using the CHARMM force field with EADock DSS.
    Grosdidier A; Zoete V; Michielin O
    J Comput Chem; 2011 Jul; 32(10):2149-59. PubMed ID: 21541955
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking.
    Wong KM; Tai HK; Siu SWI
    Chem Biol Drug Des; 2021 Jan; 97(1):97-110. PubMed ID: 32679606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. idDock+: Integrating Machine Learning in Probabilistic Search for Protein-Protein Docking.
    Hashmi I; Shehu A
    J Comput Biol; 2015 Sep; 22(9):806-22. PubMed ID: 26222714
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.
    Li H; Li C
    J Comput Chem; 2010 Jul; 31(10):2014-22. PubMed ID: 20166125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flexible docking using Tabu search and an empirical estimate of binding affinity.
    Baxter CA; Murray CW; Clark DE; Westhead DR; Eldridge MD
    Proteins; 1998 Nov; 33(3):367-82. PubMed ID: 9829696
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Continuous Evaluation of Ligand Protein Predictions: A Weekly Community Challenge for Drug Docking.
    Wagner JR; Churas CP; Liu S; Swift RV; Chiu M; Shao C; Feher VA; Burley SK; Gilson MK; Amaro RE
    Structure; 2019 Aug; 27(8):1326-1335.e4. PubMed ID: 31257108
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ph4Dock: pharmacophore-based protein-ligand docking.
    Goto J; Kataoka R; Hirayama N
    J Med Chem; 2004 Dec; 47(27):6804-11. PubMed ID: 15615529
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids.
    Thomsen R
    Biosystems; 2003 Nov; 72(1-2):57-73. PubMed ID: 14642659
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GalaxyDock: protein-ligand docking with flexible protein side-chains.
    Shin WH; Seok C
    J Chem Inf Model; 2012 Dec; 52(12):3225-32. PubMed ID: 23198780
    [TBL] [Abstract][Full Text] [Related]  

  • 55. S4MPLE--sampler for multiple protein-ligand entities: simultaneous docking of several entities.
    Hoffer L; Horvath D
    J Chem Inf Model; 2013 Jan; 53(1):88-102. PubMed ID: 23215156
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-efficient docking of flexible ligands into active sites of proteins.
    Rarey M; Kramer B; Lengauer T
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():300-8. PubMed ID: 7584452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A balance-evolution artificial bee colony algorithm for protein structure optimization based on a three-dimensional AB off-lattice model.
    Li B; Chiong R; Lin M
    Comput Biol Chem; 2015 Feb; 54():1-12. PubMed ID: 25463349
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multi-Body Interactions in Molecular Docking Program Devised with Key Water Molecules in Protein Binding Sites.
    Xiao W; Wang D; Shen Z; Li S; Li H
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30208655
    [TBL] [Abstract][Full Text] [Related]  

  • 59. S4MPLE--Sampler for Multiple Protein-Ligand Entities: Methodology and Rigid-Site Docking Benchmarking.
    Hoffer L; Chira C; Marcou G; Varnek A; Horvath D
    Molecules; 2015 May; 20(5):8997-9028. PubMed ID: 25996209
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy.
    Erickson JA; Jalaie M; Robertson DH; Lewis RA; Vieth M
    J Med Chem; 2004 Jan; 47(1):45-55. PubMed ID: 14695819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.