These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Manganese Oxide/Iron Carbide Encapsulated in Nitrogen and Boron Codoped Carbon Nanowire Networks as Accelerated Alkaline Hydrogen Evolution and Oxygen Reduction Bifunctional Electrocatalysts. Liu Z; Guo F; Han L; Xiao J; Zeng X; Zhang C; Dong P; Li M; Zhang Y ACS Appl Mater Interfaces; 2022 Mar; 14(11):13280-13294. PubMed ID: 35263074 [TBL] [Abstract][Full Text] [Related]
23. Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries. Zhong B; Zhang L; Yu J; Fan K J Colloid Interface Sci; 2019 Jun; 546():113-121. PubMed ID: 30904687 [TBL] [Abstract][Full Text] [Related]
24. Nitrogen-Doped Ketjenblack Carbon Supported Co Cheng G; Liu G; Liu P; Chen L; Han S; Han J; Ye F; Song W; Lan B; Sun M; Yu L Front Chem; 2019; 7():766. PubMed ID: 31867304 [TBL] [Abstract][Full Text] [Related]
25. Construction of a Co/MnO Mott-Schottky Heterostructure to Achieve Interfacial Synergy in the Oxygen Reduction Reaction for Aluminum-Air Batteries. Li K; Cheng R; Xue Q; Zhao T; Wang F; Fu C ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36780395 [TBL] [Abstract][Full Text] [Related]
26. Interfacing Manganese Oxide and Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for Zn-Air Batteries. Lu XF; Chen Y; Wang S; Gao S; Lou XWD Adv Mater; 2019 Sep; 31(39):e1902339. PubMed ID: 31348572 [TBL] [Abstract][Full Text] [Related]
27. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries. Liu JN; Li BQ; Zhao CX; Yu J; Zhang Q ChemSusChem; 2020 Mar; 13(6):1529-1536. PubMed ID: 31845530 [TBL] [Abstract][Full Text] [Related]
28. Controllable Hortensia-like MnO Xu N; Nie Q; Luo L; Yao C; Gong Q; Liu Y; Zhou XD; Qiao J ACS Appl Mater Interfaces; 2019 Jan; 11(1):578-587. PubMed ID: 30525371 [TBL] [Abstract][Full Text] [Related]
29. From Chlorella to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. Wang G; Deng Y; Yu J; Zheng L; Du L; Song H; Liao S ACS Appl Mater Interfaces; 2017 Sep; 9(37):32168-32178. PubMed ID: 28845976 [TBL] [Abstract][Full Text] [Related]
30. Waste Lithium Ion Battery Evolves into Heteroatom Doped Carbon as Oxygen Reduction Electrocatalyst for Aqueous Al-Air Batteries. Shen Y; Zhang G; Wang R; Shen L; Li Q; Zheng F; Wu Q; Ma Z Chempluschem; 2022 Dec; 87(12):e202200328. PubMed ID: 36524725 [TBL] [Abstract][Full Text] [Related]
31. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction. Xu J; Lu S; Chen X; Wang J; Zhang B; Zhang X; Xiao C; Ding S Nanotechnology; 2017 Dec; 28(48):485701. PubMed ID: 29039353 [TBL] [Abstract][Full Text] [Related]
32. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333 [TBL] [Abstract][Full Text] [Related]
33. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application. Singh SK; Dhavale VM; Kurungot S ACS Appl Mater Interfaces; 2015 Sep; 7(38):21138-49. PubMed ID: 26376490 [TBL] [Abstract][Full Text] [Related]
34. Thermal Migration Promotes the Formation of Manganese and Nitrogen Doped Polyhedral Surface for Boosted Oxygen Reduction Electrocatalysis. Zhao T; Wei S; Niu S; Wu Q; Liu K; Ma Z; Huang Y; Wang H; Cai Y; Li Q Inorg Chem; 2022 Aug; 61(33):13165-13173. PubMed ID: 35943289 [TBL] [Abstract][Full Text] [Related]
35. A Controllable Dual Interface Engineering Concept for Rational Design of Efficient Bifunctional Electrocatalyst for Zinc-Air Batteries. Lu Q; Zou X; Bu Y; Liao K; Zhou W; Shao Z Small; 2022 Jan; 18(4):e2105604. PubMed ID: 34837318 [TBL] [Abstract][Full Text] [Related]
36. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Zhang J; Zhao Z; Xia Z; Dai L Nat Nanotechnol; 2015 May; 10(5):444-52. PubMed ID: 25849787 [TBL] [Abstract][Full Text] [Related]
37. Oxygen vacancy-rich N-doped carbon encapsulated BiOCl-CNTs heterostructures as robust electrocatalyst synergistically promote oxygen reduction and Zn-air batteries. Shao X; Yang Y; Liu Y; Yan P; Zhou S; Taylor Isimjan T; Yang X J Colloid Interface Sci; 2022 Feb; 607(Pt 1):826-835. PubMed ID: 34536937 [TBL] [Abstract][Full Text] [Related]
38. Meng T; Mao B; Cao M Inorg Chem; 2021 Jul; 60(14):10340-10349. PubMed ID: 34219458 [TBL] [Abstract][Full Text] [Related]
39. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction. Park JE; Jang YJ; Kim YJ; Song MS; Yoon S; Kim DH; Kim SJ Phys Chem Chem Phys; 2014 Jan; 16(1):103-9. PubMed ID: 24220278 [TBL] [Abstract][Full Text] [Related]
40. Improved ORR/OER bifunctional catalytic performance of amorphous manganese oxides prepared by photochemical metal-organic deposition. Bai F; He Y; Xu L; Wang Y; Wang Y; Hao Z; Li F RSC Adv; 2022 Jan; 12(4):2408-2415. PubMed ID: 35425262 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]