These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29652885)

  • 41. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p.
    Li S; Ault A; Malone CL; Raitt D; Dean S; Johnston LH; Deschenes RJ; Fassler JS
    EMBO J; 1998 Dec; 17(23):6952-62. PubMed ID: 9843501
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure-function analysis of Arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1.
    Bauer J; Reiss K; Veerabagu M; Heunemann M; Harter K; Stehle T
    Mol Plant; 2013 May; 6(3):959-70. PubMed ID: 23132142
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distinct domains of Escherichia coli IgaA connect envelope stress sensing and down-regulation of the Rcs phosphorelay across subcellular compartments.
    Hussein NA; Cho SH; Laloux G; Siam R; Collet JF
    PLoS Genet; 2018 May; 14(5):e1007398. PubMed ID: 29852010
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solution structure of the Escherichia coli YojN histidine-phosphotransferase domain and its interaction with cognate phosphoryl receiver domains.
    Rogov VV; Bernhard F; Löhr F; Dötsch V
    J Mol Biol; 2004 Oct; 343(4):1035-48. PubMed ID: 15476819
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two-component signal transduction pathways in Arabidopsis.
    Hwang I; Chen HC; Sheen J
    Plant Physiol; 2002 Jun; 129(2):500-15. PubMed ID: 12068096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1.
    Xu Q; West AH
    J Mol Biol; 1999 Oct; 292(5):1039-50. PubMed ID: 10512701
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional Characterization of the Receiver Domain for Phosphorelay Control in Hybrid Sensor Kinases.
    Kinoshita-Kikuta E; Kinoshita E; Eguchi Y; Yanagihara S; Edahiro K; Inoue Y; Taniguchi M; Yoshida M; Yamamoto K; Takahashi H; Sawasaki T; Utsumi R; Koike T
    PLoS One; 2015; 10(7):e0132598. PubMed ID: 26151934
    [TBL] [Abstract][Full Text] [Related]  

  • 48. WrpA Is an Atypical Flavodoxin Family Protein under Regulatory Control of the Brucella abortus General Stress Response System.
    Herrou J; Czyż DM; Willett JW; Kim HS; Chhor G; Babnigg G; Kim Y; Crosson S
    J Bacteriol; 2016 Apr; 198(8):1281-93. PubMed ID: 26858101
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli.
    Mika F; Hengge R
    Genes Dev; 2005 Nov; 19(22):2770-81. PubMed ID: 16291649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Specificity in two-component signal transduction pathways.
    Laub MT; Goulian M
    Annu Rev Genet; 2007; 41():121-45. PubMed ID: 18076326
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence that Autophosphorylation of the Major Sporulation Kinase in Bacillus subtilis Is Able To Occur in trans.
    Devi SN; Kiehler B; Haggett L; Fujita M
    J Bacteriol; 2015 Aug; 197(16):2675-84. PubMed ID: 26055117
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Rcs phosphorelay: a complex signal transduction system.
    Majdalani N; Gottesman S
    Annu Rev Microbiol; 2005; 59():379-405. PubMed ID: 16153174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay proteins revealed by alanine scanning mutagenesis.
    Tzeng YL; Hoch JA
    J Mol Biol; 1997 Sep; 272(2):200-12. PubMed ID: 9299348
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Signalling pathways in two-component phosphorelay systems.
    Perraud AL; Weiss V; Gross R
    Trends Microbiol; 1999 Mar; 7(3):115-20. PubMed ID: 10203840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural features discriminating hybrid histidine kinase Rec domains from response regulator homologs.
    Brüderlin M; Böhm R; Fadel F; Hiller S; Schirmer T; Dubey BN
    Nat Commun; 2023 Mar; 14(1):1002. PubMed ID: 36864019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The functional differences between paralogous regulators define the control of the general stress response in Sphingopyxis granuli  TFA.
    de Dios R; Santero E; Reyes-Ramírez F
    Environ Microbiol; 2022 Apr; 24(4):1918-1931. PubMed ID: 35049124
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses.
    de Dios R; Santero E; Reyes-Ramírez F
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33918849
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of Bacterial Cell Cycle Progression by Redundant Phosphatases.
    Coppine J; Kaczmarczyk A; Petit K; Brochier T; Jenal U; Hallez R
    J Bacteriol; 2020 Aug; 202(17):. PubMed ID: 32571969
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two paralogous EcfG σ factors hierarchically orchestrate the activation of the General Stress Response in Sphingopyxis granuli TFA.
    de Dios R; Rivas-Marin E; Santero E; Reyes-Ramírez F
    Sci Rep; 2020 Mar; 10(1):5177. PubMed ID: 32198475
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Feedback Control of a Two-Component Signaling System by an Fe-S-Binding Receiver Domain.
    Stein BJ; Fiebig A; Crosson S
    mBio; 2020 Mar; 11(2):. PubMed ID: 32184258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.