These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 29653187)
21. Diaphragm Motor-Evoked Potential Induced by Cervical Magnetic Stimulation following Cervical Spinal Cord Contusion in the Rat. Lee KZ; Liou LM; Vinit S J Neurotrauma; 2021 Aug; 38(15):2122-2140. PubMed ID: 33899506 [TBL] [Abstract][Full Text] [Related]
22. 5-HT7 Receptor Inhibition Transiently Improves Respiratory Function Following Daily Acute Intermittent Hypercapnic-Hypoxia in Rats With Chronic Midcervical Spinal Cord Contusion. Wu MJ; Vinit S; Chen CL; Lee KZ Neurorehabil Neural Repair; 2020 Apr; 34(4):333-343. PubMed ID: 32102596 [No Abstract] [Full Text] [Related]
23. Comorbidity of cardiorespiratory and locomotor dysfunction following cervical spinal cord injury in the rat. Chen RY; Chang HS; Huang HC; Hsueh YH; Tu YK; Lee KZ J Appl Physiol (1985); 2023 Dec; 135(6):1268-1283. PubMed ID: 37855033 [TBL] [Abstract][Full Text] [Related]
24. The Impact of Cervical Spinal Cord Contusion on the Laryngeal Resistance in the Rat. Lee KZ; Xu KJ J Neurotrauma; 2019 Feb; 36(3):448-459. PubMed ID: 29943656 [TBL] [Abstract][Full Text] [Related]
25. Respiratory motor outputs following unilateral midcervical spinal cord injury in the adult rat. Lee KZ; Huang YJ; Tsai IL J Appl Physiol (1985); 2014 Feb; 116(4):395-405. PubMed ID: 24285148 [TBL] [Abstract][Full Text] [Related]
27. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750 [TBL] [Abstract][Full Text] [Related]
28. Phrenic motor neuron degeneration compromises phrenic axonal circuitry and diaphragm activity in a unilateral cervical contusion model of spinal cord injury. Nicaise C; Hala TJ; Frank DM; Parker JL; Authelet M; Leroy K; Brion JP; Wright MC; Lepore AC Exp Neurol; 2012 Jun; 235(2):539-52. PubMed ID: 22465264 [TBL] [Abstract][Full Text] [Related]
29. Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury. Lee KZ J Physiol; 2016 Oct; 594(20):6009-6024. PubMed ID: 27106483 [TBL] [Abstract][Full Text] [Related]
30. Effects of serotonergic agents on respiratory recovery after cervical spinal injury. Hsu SH; Lee KZ J Appl Physiol (1985); 2015 Nov; 119(10):1075-87. PubMed ID: 26359482 [TBL] [Abstract][Full Text] [Related]
31. Modulatory effect of trans-spinal magnetic intermittent theta burst stimulation on diaphragmatic activity following cervical spinal cord contusion in the rat. Lee KZ; Vinit S Spine J; 2024 Feb; 24(2):352-372. PubMed ID: 37774983 [TBL] [Abstract][Full Text] [Related]
32. Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function. Ghosh B; Wang Z; Nong J; Urban MW; Zhang Z; Trovillion VA; Wright MC; Zhong Y; Lepore AC J Neurosci; 2018 Jun; 38(26):5982-5995. PubMed ID: 29891731 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of respiratory muscle activation using respiratory motor control assessment (RMCA) in individuals with chronic spinal cord injury. Aslan SC; Chopra MK; McKay WB; Folz RJ; Ovechkin AV J Vis Exp; 2013 Jul; (77):. PubMed ID: 23912611 [TBL] [Abstract][Full Text] [Related]
35. Longitudinal electrophysiological changes after cervical hemi-contusion spinal cord injury in rats. Huang Z; Li R; Liu J; Huang Z; Hu Y; Wu X; Zhu Q Neurosci Lett; 2018 Jan; 664():116-122. PubMed ID: 29138091 [TBL] [Abstract][Full Text] [Related]
36. Paced breathing and phrenic nerve responses evoked by epidural stimulation following complete high cervical spinal cord injury in rats. Bezdudnaya T; Lane MA; Marchenko V J Appl Physiol (1985); 2018 Sep; 125(3):687-696. PubMed ID: 29771608 [TBL] [Abstract][Full Text] [Related]
37. Compensatory muscle activation during forced respiratory tasks in individuals with chronic spinal cord injury. Terson de Paleville D; Lorenz D Respir Physiol Neurobiol; 2015 Oct; 217():54-62. PubMed ID: 26169572 [TBL] [Abstract][Full Text] [Related]
38. Forelimb motor performance following cervical spinal cord contusion injury in the rat. Schrimsher GW; Reier PJ Exp Neurol; 1992 Sep; 117(3):287-98. PubMed ID: 1397165 [TBL] [Abstract][Full Text] [Related]
39. Respiratory muscle training in athletes with cervical spinal cord injury: effects on cardiopulmonary function and exercise capacity. Gee CM; Williams AM; Sheel AW; Eves ND; West CR J Physiol; 2019 Jul; 597(14):3673-3685. PubMed ID: 31115056 [TBL] [Abstract][Full Text] [Related]
40. A Cervical Spinal Cord Hemi-Contusion Injury Model Based on Displacement Control in Non-Human Primates Liu J; Li R; Huang Z; Huang Z; Li Y; Wu X; Lin J; Jiang H; Cheng Y; Kong G; Wu X; Liu Q; Liu Y; Yang Z; Li R; Chen J; Fu J; Ramer MS; Kwon BK; Liu J; Kramer JLK; Tetzlaff W; Hu Y; Zhu Q J Neurotrauma; 2020 Aug; 37(15):1669-1686. PubMed ID: 32174266 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]