BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29653192)

  • 1. Synergistic stabilisation of NOsGC by cinaciguat and non-hydrolysable nucleotides: Evidence for sGC activator-induced communication between the heme-binding and catalytic domains.
    Sömmer A; Behrends S
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):702-711. PubMed ID: 29653192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BAY 60-2770 activates two isoforms of nitric oxide sensitive guanylyl cyclase: Evidence for stable insertion of activator drugs.
    Sömmer A; Sandner P; Behrends S
    Biochem Pharmacol; 2018 Jan; 147():10-20. PubMed ID: 29155144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine 135 of the β
    Rühle A; Elgert C; Hahn MG; Sandner P; Behrends S
    Eur J Pharmacol; 2020 Aug; 881():173203. PubMed ID: 32446711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor.
    Montfort WR; Wales JA; Weichsel A
    Antioxid Redox Signal; 2017 Jan; 26(3):107-121. PubMed ID: 26979942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel soluble guanylyl cyclase activator, BR 11257, acts as a non-stabilising partial agonist of sGC.
    Elgert C; Rühle A; Sandner P; Behrends S
    Biochem Pharmacol; 2019 May; 163():142-153. PubMed ID: 30753814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational exploration of the binding mode of heme-dependent stimulators into the active catalytic domain of soluble guanylate cyclase.
    Agulló L; Buch I; Gutiérrez-de-Terán H; Garcia-Dorado D; Villà-Freixa J
    Proteins; 2016 Oct; 84(10):1534-48. PubMed ID: 27364190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic mutations in soluble guanylyl cyclase (sGC) reveal a key role for interfacial regions in the sGC activation mechanism.
    Childers KC; Yao XQ; Giannakoulias S; Amason J; Hamelberg D; Garcin ED
    J Biol Chem; 2019 Nov; 294(48):18451-18464. PubMed ID: 31645439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal shift assay: Strengths and weaknesses of the method to investigate the ligand-induced thermostabilization of soluble guanylyl cyclase.
    Elgert C; Rühle A; Sandner P; Behrends S
    J Pharm Biomed Anal; 2020 Mar; 181():113065. PubMed ID: 32032919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The soluble guanylate cyclase stimulator riociguat and the soluble guanylate cyclase activator cinaciguat exert no direct effects on contractility and relaxation of cardiac myocytes from normal rats.
    Reinke Y; Gross S; Eckerle LG; Hertrich I; Busch M; Busch R; Riad A; Rauch BH; Stasch JP; Dörr M; Felix SB
    Eur J Pharmacol; 2015 Nov; 767():1-9. PubMed ID: 26407652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Molecular Mechanism of Human Soluble Guanylate Cyclase Activation by NO in vitro and in vivo.
    Pan J; Yuan H; Zhang X; Zhang H; Xu Q; Zhou Y; Tan L; Nagawa S; Huang ZX; Tan X
    Sci Rep; 2017 Feb; 7():43112. PubMed ID: 28230071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Characterization of the Human Heme Nitric Oxide/Oxygen (HNOX) Domain under the Influence of Diatomic Gaseous Ligands.
    Khalid RR; Siddiqi AR; Mylonas E; Maryam A; Kokkinidis M
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30736292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation mechanism of human soluble guanylate cyclase by stimulators and activators.
    Liu R; Kang Y; Chen L
    Nat Commun; 2021 Sep; 12(1):5492. PubMed ID: 34535643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide activation of guanylate cyclase pushes the α1 signaling helix and the β1 heme-binding domain closer to the substrate-binding site.
    Busker M; Neidhardt I; Behrends S
    J Biol Chem; 2014 Jan; 289(1):476-84. PubMed ID: 24220034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.
    Alexandropoulos II; Argyriou AI; Marousis KD; Topouzis S; Papapetropoulos A; Spyroulias GA
    Biomol NMR Assign; 2016 Oct; 10(2):395-400. PubMed ID: 27614467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irreversible Activation and Stabilization of Soluble Guanylate Cyclase by the Protoporphyrin IX Mimetic Cinaciguat.
    Kollau A; Opelt M; Wölkart G; Gorren ACF; Russwurm M; Koesling D; Mayer B; Schrammel A
    Mol Pharmacol; 2018 Feb; 93(2):73-78. PubMed ID: 29138269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Per-ARNT-Sim Domains in Nitric Oxide Signaling by Soluble Guanylyl Cyclase.
    Montfort WR
    J Mol Biol; 2024 Feb; 436(3):168235. PubMed ID: 37572934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterization of the catalytic domains of soluble guanylate cyclase: interaction with the heme domain.
    Winger JA; Marletta MA
    Biochemistry; 2005 Mar; 44(10):4083-90. PubMed ID: 15751985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide-independent stimulation of soluble guanylate cyclase with BAY 41-2272 in cardiovascular disease.
    Boerrigter G; Burnett JC
    Cardiovasc Drug Rev; 2007; 25(1):30-45. PubMed ID: 17445086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure/function of the soluble guanylyl cyclase catalytic domain.
    Childers KC; Garcin ED
    Nitric Oxide; 2018 Jul; 77():53-64. PubMed ID: 29702251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase.
    Khalid RR; Maryam A; Sezerman OU; Mylonas E; Siddiqi AR; Kokkinidis M
    Sci Rep; 2020 Jun; 10(1):9488. PubMed ID: 32528025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.