BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29653405)

  • 1. Modeling margin of stability with feet in place following a postural perturbation: Effect of altered anthropometric models for estimated extrapolated centre of mass.
    Inkol KA; Huntley AH; Vallis LA
    Gait Posture; 2018 May; 62():434-439. PubMed ID: 29653405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of biases in dynamic margins of stability introduced by the use of simplified center of mass estimates during walking and turning.
    Havens KL; Mukherjee T; Finley JM
    Gait Posture; 2018 Jan; 59():162-167. PubMed ID: 29031999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can segmental model reductions quantify whole-body balance accurately during dynamic activities?
    Jamkrajang P; Robinson MA; Limroongreungrat W; Vanrenterghem J
    Gait Posture; 2017 Jul; 56():37-41. PubMed ID: 28494320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of weight-bearing asymmetry on dynamic postural stability in healthy young individuals.
    de Kam D; Kamphuis JF; Weerdesteyn V; Geurts AC
    Gait Posture; 2016 Mar; 45():56-61. PubMed ID: 26979884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the dynamic margins of stability for use in evaluations of balance following a support-surface perturbation.
    Inkol KA; Vallis LA
    J Biomech; 2019 Oct; 95():109302. PubMed ID: 31481246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the relationship between stability and variability of the centre of mass and centre of pressure.
    Rajachandrakumar R; Mann J; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2018 Jun; 63():254-259. PubMed ID: 29778979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stricter condition for standing balance after unexpected perturbations.
    Hof AL; Curtze C
    J Biomech; 2016 Feb; 49(4):580-5. PubMed ID: 26892898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of ground reaction force and marker-based methods to estimate mediolateral center of mass displacement and margins of stability during walking.
    Buurke TJW; van de Venis L; den Otter R; Nonnekes J; Keijsers N
    J Biomech; 2023 Jan; 146():111415. PubMed ID: 36542905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do perturbation-evoked responses result in higher reaction time costs depending on the direction and magnitude of perturbation?
    Inkol KA; Huntley AH; Vallis LA
    Exp Brain Res; 2018 Jun; 236(6):1689-1698. PubMed ID: 29623379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations.
    Patel PJ; Bhatt T
    Neuroscience; 2016 Oct; 333():252-63. PubMed ID: 27418344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintaining sagittal plane balance compromises frontal plane balance during reactive stepping in people post-stroke.
    Buurke TJW; Liu C; Park S; den Otter R; Finley JM
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105135. PubMed ID: 32818902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direction-specific postural instability in subjects with Parkinson's disease.
    Horak FB; Dimitrova D; Nutt JG
    Exp Neurol; 2005 Jun; 193(2):504-21. PubMed ID: 15869953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper body balance control strategy during continuous 3D postural perturbation in young adults.
    Amori V; Petrarca M; Patané F; Castelli E; Cappa P
    Gait Posture; 2015 Jan; 41(1):19-25. PubMed ID: 25205381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in spatial margin of stability in typically developing children relate to the mechanics of gait.
    Hallemans A; Verbecque E; Dumas R; Cheze L; Van Hamme A; Robert T
    Gait Posture; 2018 Jun; 63():33-38. PubMed ID: 29705520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting dynamic postural instability using center of mass time-to-contact information.
    Hasson CJ; Van Emmerik RE; Caldwell GE
    J Biomech; 2008 Jul; 41(10):2121-9. PubMed ID: 18556003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upward perturbations trigger a stumbling effect.
    Cano Porras D; Heimler B; Jacobs JV; Naor SK; Inzelberg R; Zeilig G; Plotnik M
    Hum Mov Sci; 2023 Apr; 88():103069. PubMed ID: 36871477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Destabilization of the Upright Posture Through Elevation of the Center of Mass.
    Dounskaia N; Peterson D; Bruhns RP
    Ann Biomed Eng; 2018 Feb; 46(2):318-323. PubMed ID: 29134294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive Balance in Individuals With Chronic Stroke: Biomechanical Factors Related to Perturbation-Induced Backward Falling.
    Salot P; Patel P; Bhatt T
    Phys Ther; 2016 Mar; 96(3):338-47. PubMed ID: 26206220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repeated Exposure to Forward Support-Surface Perturbation During Overground Walking Alters Upper-Body Kinematics and Step Parameters.
    Inkol KA; Huntley AH; Vallis LA
    J Mot Behav; 2019; 51(3):318-330. PubMed ID: 29856268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.