These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 29653434)
1. Elevated CO Liu JX; Feng K; Wang GL; Xu ZS; Wang F; Xiong AS Plant Physiol Biochem; 2018 Jun; 127():310-319. PubMed ID: 29653434 [TBL] [Abstract][Full Text] [Related]
2. Elevated gibberellin enhances lignin accumulation in celery (Apium graveolens L.) leaves. Duan AQ; Feng K; Wang GL; Liu JX; Xu ZS; Xiong AS Protoplasma; 2019 May; 256(3):777-788. PubMed ID: 30604245 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome profiling reveals the association of multiple genes and pathways contributing to hormonal control in celery leaves. Liu J; Feng K; Hou X; Li H; Wang G; Xu Z; Xiong A Acta Biochim Biophys Sin (Shanghai); 2019 May; 51(5):524-534. PubMed ID: 30939194 [TBL] [Abstract][Full Text] [Related]
4. De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development. Jia XL; Wang GL; Xiong F; Yu XR; Xu ZS; Wang F; Xiong AS Sci Rep; 2015 Feb; 5():8259. PubMed ID: 25651889 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide analysis of NAC transcription factors and their response to abiotic stress in celery (Apium graveolens L.). Duan AQ; Yang XL; Feng K; Liu JX; Xu ZS; Xiong AS Comput Biol Chem; 2020 Feb; 84():107186. PubMed ID: 31809981 [TBL] [Abstract][Full Text] [Related]
6. Comparative Transcriptome Analysis of Celery Leaf Blades Identified an R2R3-MYB Transcription Factor that Regulates Apigenin Metabolism. Yan J; Yu L; He L; Zhu L; Xu S; Wan Y; Wang H; Wang Y; Zhu W J Agric Food Chem; 2019 May; 67(18):5265-5277. PubMed ID: 30969771 [TBL] [Abstract][Full Text] [Related]
7. Complete Mitochondrial Genome Sequence and Identification of a Candidate Gene Responsible for Cytoplasmic Male Sterility in Celery ( Cheng Q; Wang P; Li T; Liu J; Zhang Y; Wang Y; Sun L; Shen H Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445290 [TBL] [Abstract][Full Text] [Related]
8. Mapping of the AgWp1 gene for the white petiole in celery (Apium graveolens L.). Cheng Q; He Y; Lu Q; Wang H; Liu S; Liu J; Liu M; Zhang Y; Wang Y; Sun L; Shen H Plant Sci; 2023 Feb; 327():111563. PubMed ID: 36509245 [TBL] [Abstract][Full Text] [Related]
9. Elevated gibberellin altered morphology, anatomical structure, and transcriptional regulatory networks of hormones in celery leaves. Duan AQ; Feng K; Liu JX; Que F; Xu ZS; Xiong AS Protoplasma; 2019 Nov; 256(6):1507-1517. PubMed ID: 31168667 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome profiling of β-carotene biosynthesis genes and β-carotene accumulation in leaf blades and petioles of celery cv. Jinnanshiqin. Li JW; Ma J; Feng K; Xu ZS; Xiong AS Acta Biochim Biophys Sin (Shanghai); 2019 Jan; 51(1):116-119. PubMed ID: 30508041 [No Abstract] [Full Text] [Related]
11. Comparative de novo transcriptomics and untargeted metabolomic analyses elucidate complicated mechanisms regulating celery (Apium graveolens L.) responses to selenium stimuli. Zhang C; Xu B; Zhao CR; Sun J; Lai Q; Yu C PLoS One; 2019; 14(12):e0226752. PubMed ID: 31887119 [TBL] [Abstract][Full Text] [Related]
12. AgZDS, a gene encoding ζ-carotene desaturase, increases lutein and β-carotene contents in transgenic Arabidopsis and celery. Ding X; Liu JX; Li T; Duan AQ; Yin L; Wang H; Jia LL; Liu YH; Liu H; Tao JP; Xiong AS Plant Sci; 2021 Nov; 312():111043. PubMed ID: 34620441 [TBL] [Abstract][Full Text] [Related]
13. A Review of the Antioxidant Activity of Celery ( Apium graveolens L). Kooti W; Daraei N J Evid Based Complementary Altern Med; 2017 Oct; 22(4):1029-1034. PubMed ID: 28701046 [TBL] [Abstract][Full Text] [Related]
14. Comparative Physiological and Transcriptomic Analyses of Improved Heat Stress Tolerance in Celery ( Li M; Zhou J; Du J; Li X; Sun Y; Wang Z; Lin Y; Zhang Y; Wang Y; He W; Wang X; Chen Q; Zhang Y; Luo Y; Tang H Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232683 [TBL] [Abstract][Full Text] [Related]
15. AgMYB12, a novel R2R3-MYB transcription factor, regulates apigenin biosynthesis by interacting with the AgFNS gene in celery. Wang H; Liu JX; Feng K; Li T; Duan AQ; Liu YH; Liu H; Xiong AS Plant Cell Rep; 2022 Jan; 41(1):139-151. PubMed ID: 34601645 [TBL] [Abstract][Full Text] [Related]
16. Combined Analysis of the Metabolome and Transcriptome to Explore Heat Stress Responses and Adaptation Mechanisms in Celery ( Li M; Li J; Zhang R; Lin Y; Xiong A; Tan G; Luo Y; Zhang Y; Chen Q; Wang Y; Zhang Y; Wang X; Tang H Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328788 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional profiling of genes involved in ascorbic acid biosynthesis, recycling, and degradation during three leaf developmental stages in celery. Huang W; Wang GL; Li H; Wang F; Xu ZS; Xiong AS Mol Genet Genomics; 2016 Dec; 291(6):2131-2143. PubMed ID: 27604234 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomics and Genomics Analysis Uncover the Differentially Expressed Chlorophyll and Carotenoid-Related Genes in Celery. Song X; Li N; Zhang Y; Liang Y; Zhou R; Yu T; Shen S; Feng S; Zhang Y; Li X; Lin H; Wang X Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012264 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of the Agvip1 gene and response to abiotic and metal ions stresses in three celery cultivars. Li Y; Chen YY; Wang F; Xu ZS; Jiang Q; Xiong AS Mol Biol Rep; 2014 Sep; 41(9):6003-11. PubMed ID: 24969482 [TBL] [Abstract][Full Text] [Related]
20. Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses. Zamski E; Guo WW; Yamamoto YT; Pharr DM; Williamson JD Plant Mol Biol; 2001 Nov; 47(5):621-31. PubMed ID: 11725947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]