These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 29653577)

  • 61. Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer.
    Sargazi S; Siddiqui B; Qindeel M; Rahdar A; Bilal M; Behzadmehr R; Mirinejad S; Pandey S
    Carbohydr Polym; 2022 Aug; 290():119489. PubMed ID: 35550773
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nanobiotechnology approaches for engineering smart plant sensors.
    Giraldo JP; Wu H; Newkirk GM; Kruss S
    Nat Nanotechnol; 2019 Jun; 14(6):541-553. PubMed ID: 31168083
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Plant nanobionics: Fortifying food security via engineered plant productivity.
    Vithanage M; Zhang X; Gunarathne V; Zhu Y; Herath L; Peiris K; Solaiman ZM; Bolan N; Siddique KHM
    Environ Res; 2023 Jul; 229():115934. PubMed ID: 37080274
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Unique benefits of nanotechnology to drug delivery and diagnostics.
    McNeil SE
    Methods Mol Biol; 2011; 697():3-8. PubMed ID: 21116949
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Exploiting the therapeutic potential of microRNAs in viral diseases: expectations and limitations.
    Hemida MG; Ye X; Thair S; Yang D
    Mol Diagn Ther; 2010 Oct; 14(5):271-82. PubMed ID: 21053993
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanobiotechnology: an efficient approach to drug delivery of unstable biomolecules.
    Amaral AC; Felipe MS
    Curr Protein Pept Sci; 2013 Nov; 14(7):588-94. PubMed ID: 23968343
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A focus on microfluidics and nanotechnology approaches for the ultra sensitive detection of microRNA.
    Lingam S; Beta M; Dendukuri D; Krishnakumar S
    Microrna; 2014; 3(1):18-28. PubMed ID: 25069509
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges.
    Kwekkeboom RF; Lei Z; Doevendans PA; Musters RJ; Sluijter JP
    Clin Sci (Lond); 2014 Sep; 127(6):351-65. PubMed ID: 24895056
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recent progress in applications of nanoparticles in fish medicine: A review.
    Shaalan M; Saleh M; El-Mahdy M; El-Matbouli M
    Nanomedicine; 2016 Apr; 12(3):701-710. PubMed ID: 26656532
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The emerging potential of by-products as platforms for drug delivery systems.
    Joanitti GA; Silva LP
    Curr Drug Targets; 2014 May; 15(5):478-85. PubMed ID: 24712518
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system.
    Bamrungsap S; Zhao Z; Chen T; Wang L; Li C; Fu T; Tan W
    Nanomedicine (Lond); 2012 Aug; 7(8):1253-71. PubMed ID: 22931450
    [TBL] [Abstract][Full Text] [Related]  

  • 72. microRNA Detection via Nanostructured Biochips for Early Cancer Diagnostics.
    Martino S; Tammaro C; Misso G; Falco M; Scrima M; Bocchetti M; Rea I; De Stefano L; Caraglia M
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175469
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mesoporous Silica Nanoparticles as Carriers for Intracellular Delivery of Nucleic Acids and Subsequent Therapeutic Applications.
    Cha W; Fan R; Miao Y; Zhou Y; Qin C; Shan X; Wan X; Li J
    Molecules; 2017 May; 22(5):. PubMed ID: 28492505
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Applications of nanotechnologies for miRNA-based cancer therapeutics: current advances and future perspectives.
    Bravo-Vázquez LA; Méndez-García A; Rodríguez AL; Sahare P; Pathak S; Banerjee A; Duttaroy AK; Paul S
    Front Bioeng Biotechnol; 2023; 11():1208547. PubMed ID: 37576994
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives.
    Ali SS; Al-Tohamy R; Koutra E; Moawad MS; Kornaros M; Mustafa AM; Mahmoud YA; Badr A; Osman MEH; Elsamahy T; Jiao H; Sun J
    Sci Total Environ; 2021 Oct; 792():148359. PubMed ID: 34147795
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The role of nanobiotechnology in drug discovery.
    Jain KK
    Drug Discov Today; 2005 Nov; 10(21):1435-42. PubMed ID: 16243263
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nanotechnology in reproductive medicine: emerging applications of nanomaterials.
    Barkalina N; Charalambous C; Jones C; Coward K
    Nanomedicine; 2014 Jul; 10(5):921-38. PubMed ID: 24444494
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Formation of miRNA Nanoprobes-Conjugation Approaches Leading to the Functionalization.
    Vilímová I; Hervé-Aubert K; Chourpa I
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500520
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of nanotechnology in agriculture with special reference to management of insect pests.
    Rai M; Ingle A
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):287-93. PubMed ID: 22388570
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanomaterial based gene delivery: a promising method for plant genome engineering.
    Jat SK; Bhattacharya J; Sharma MK
    J Mater Chem B; 2020 May; 8(19):4165-4175. PubMed ID: 32285905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.