BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29654124)

  • 1. Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression.
    Chakraborty U; Dinh TA; Alani E
    Genetics; 2018 Jun; 209(2):439-456. PubMed ID: 29654124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae.
    Chakraborty U; George CM; Lyndaker AM; Alani E
    Genetics; 2016 Feb; 202(2):525-40. PubMed ID: 26680658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of
    Bowen N; Kolodner RD
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):3607-3612. PubMed ID: 28265089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition.
    Lee SD; Surtees JA; Alani E
    J Mol Biol; 2007 Feb; 366(1):53-66. PubMed ID: 17157869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair.
    Graham WJ; Putnam CD; Kolodner RD
    J Biol Chem; 2018 Nov; 293(47):18055-18070. PubMed ID: 30237169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo.
    Medina-Rivera M; Phelps S; Sridharan M; Becker J; Lamb NA; Kumar C; Sutton MD; Bielinsky A; Balakrishnan L; Surtees JA
    Nucleic Acids Res; 2023 Dec; 51(22):12185-12206. PubMed ID: 37930834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae Msh2-Msh6 DNA binding kinetics reveal a mechanism of targeting sites for DNA mismatch repair.
    Zhai J; Hingorani MM
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):680-5. PubMed ID: 20080735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex.
    Srivatsan A; Bowen N; Kolodner RD
    J Biol Chem; 2014 Mar; 289(13):9352-64. PubMed ID: 24550389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MutSα deficiency increases tolerance to DNA damage in yeast lacking postreplication repair.
    Berg IL; Persson JO; Åström SU
    DNA Repair (Amst); 2020; 91-92():102870. PubMed ID: 32470850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective mismatch repair depends on timely control of PCNA retention on DNA by the Elg1 complex.
    Paul Solomon Devakumar LJ; Gaubitz C; Lundblad V; Kelch BA; Kubota T
    Nucleic Acids Res; 2019 Jul; 47(13):6826-6841. PubMed ID: 31114918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prerecognition Diffusion Mechanism of Human DNA Mismatch Repair Proteins along DNA: Msh2-Msh3 versus Msh2-Msh6.
    Pal A; Greenblatt HM; Levy Y
    Biochemistry; 2020 Dec; 59(51):4822-4832. PubMed ID: 33319999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCNA and Msh2-Msh6 activate an Mlh1-Pms1 endonuclease pathway required for Exo1-independent mismatch repair.
    Goellner EM; Smith CE; Campbell CS; Hombauer H; Desai A; Putnam CD; Kolodner RD
    Mol Cell; 2014 Jul; 55(2):291-304. PubMed ID: 24981171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple factors insulate Msh2-Msh6 mismatch repair activity from defects in Msh2 domain I.
    Kumar C; Piacente SC; Sibert J; Bukata AR; O'Connor J; Alani E; Surtees JA
    J Mol Biol; 2011 Aug; 411(4):765-80. PubMed ID: 21726567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of long and short patch mismatch repair reactions using Saccharomyces cerevisiae proteins.
    Bowen N; Smith CE; Srivatsan A; Willcox S; Griffith JD; Kolodner RD
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18472-7. PubMed ID: 24187148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes.
    Clark AB; Valle F; Drotschmann K; Gary RK; Kunkel TA
    J Biol Chem; 2000 Nov; 275(47):36498-501. PubMed ID: 11005803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of MSH2 and MSH6 due to heterozygous germline defects in MSH3 and MSH6.
    Morak M; Käsbauer S; Kerscher M; Laner A; Nissen AM; Benet-Pagès A; Schackert HK; Keller G; Massdorf T; Holinski-Feder E
    Fam Cancer; 2017 Oct; 16(4):491-500. PubMed ID: 28528517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.
    Smith CE; Bowen N; Graham WJ; Goellner EM; Srivatsan A; Kolodner RD
    J Biol Chem; 2015 Aug; 290(35):21580-90. PubMed ID: 26170454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates.
    Kumar C; Eichmiller R; Wang B; Williams GM; Bianco PR; Surtees JA
    DNA Repair (Amst); 2014 Jun; 18():18-30. PubMed ID: 24746922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mutations in SGS1 and in genes functionally related to SGS1 on inverted repeat-stimulated spontaneous unequal sister-chromatid exchange in yeast.
    Nag DK; Cavallo SJ
    BMC Mol Biol; 2007 Dec; 8():120. PubMed ID: 18166135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair.
    Johnson RE; Kovvali GK; Guzder SN; Amin NS; Holm C; Habraken Y; Sung P; Prakash L; Prakash S
    J Biol Chem; 1996 Nov; 271(45):27987-90. PubMed ID: 8910404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.