BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29654195)

  • 1. Extravascular Blood Augments Myogenic Constriction of Cerebral Arterioles: Implications for Hemorrhage-Induced Vasospasm.
    Deng W; Kandhi S; Zhang B; Huang A; Koller A; Sun D
    J Am Heart Assoc; 2018 Apr; 7(8):. PubMed ID: 29654195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of subarachnoid hemorrhage on parenchymal arteriolar function.
    Wellman GC; Koide M
    Acta Neurochir Suppl; 2013; 115():173-7. PubMed ID: 22890665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization.
    Nystoriak MA; O'Connor KP; Sonkusare SK; Brayden JE; Nelson MT; Wellman GC
    Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H803-12. PubMed ID: 21148767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High dietary salt alters arteriolar myogenic responsiveness in normotensive and hypertensive rats.
    Nurkiewicz TR; Boegehold MA
    Am J Physiol; 1998 Dec; 275(6):H2095-104. PubMed ID: 9843809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study.
    Friedrich B; Müller F; Feiler S; Schöller K; Plesnila N
    J Cereb Blood Flow Metab; 2012 Mar; 32(3):447-55. PubMed ID: 22146194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propentdyopents as Heme Degradation Intermediates Constrict Mouse Cerebral Arterioles and Are Present in the Cerebrospinal Fluid of Patients With Subarachnoid Hemorrhage.
    Joerk A; Ritter M; Langguth N; Seidel RA; Freitag D; Herrmann KH; Schaefgen A; Ritter M; Günther M; Sommer C; Braemer D; Walter J; Ewald C; Kalff R; Reichenbach JR; Westerhausen M; Pohnert G; Witte OW; Holthoff K
    Circ Res; 2019 Jun; 124(12):e101-e114. PubMed ID: 30947629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral artery myogenic reactivity: The next frontier in developing effective interventions for subarachnoid hemorrhage.
    Lidington D; Kroetsch JT; Bolz SS
    J Cereb Blood Flow Metab; 2018 Jan; 38(1):17-37. PubMed ID: 29135346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between Arteriole Membrane Potential and Cerebral Vasospasm after Subarachnoid Hemorrhage in Rats.
    Zhao D; He X; Liu L; Liu Q; Xu H; Ji Y; Zhu L; Wang G; Xu J; Wang Y
    Neurol India; 2020; 68(2):327-332. PubMed ID: 32189713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutically Targeting Tumor Necrosis Factor-α/Sphingosine-1-Phosphate Signaling Corrects Myogenic Reactivity in Subarachnoid Hemorrhage.
    Yagi K; Lidington D; Wan H; Fares JC; Meissner A; Sumiyoshi M; Ai J; Foltz WD; Nedospasov SA; Offermanns S; Nagahiro S; Macdonald RL; Bolz SS
    Stroke; 2015 Aug; 46(8):2260-70. PubMed ID: 26138121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced myogenic activation in skeletal muscle arterioles from spontaneously hypertensive rats.
    Falcone JC; Granger HJ; Meininger GA
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H1847-55. PubMed ID: 8285222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor necrosis factor-alpha mediates hemolysis-induced vasoconstriction and the cerebral vasospasm evoked by subarachnoid hemorrhage.
    Vecchione C; Frati A; Di Pardo A; Cifelli G; Carnevale D; Gentile MT; Carangi R; Landolfi A; Carullo P; Bettarini U; Antenucci G; Mascio G; Busceti CL; Notte A; Maffei A; Cantore GP; Lembo G
    Hypertension; 2009 Jul; 54(1):150-6. PubMed ID: 19470883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal maturation attenuates pressure-evoked myogenic tone and stretch-induced increases in Ca2+ in rat cerebral arteries.
    Charles SM; Zhang L; Longo LD; Buchholz JN; Pearce WJ
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R737-44. PubMed ID: 17553845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage.
    Ishiguro M; Puryear CB; Bisson E; Saundry CM; Nathan DJ; Russell SR; Tranmer BI; Wellman GC
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2217-25. PubMed ID: 12388249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subarachnoid blood causes pial arteriolar constriction in newborn pigs.
    Parfenova H; Shibata M; Leffler CW
    Stroke; 1993 Nov; 24(11):1729-34. PubMed ID: 8236349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage.
    Sun BL; Zheng CB; Yang MF; Yuan H; Zhang SM; Wang LX
    Cell Mol Neurobiol; 2009 Mar; 29(2):235-41. PubMed ID: 18821009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal responses of the human cerebral microcirculation to papaverin during aneurysm surgery.
    Pennings FA; Albrecht KW; Muizelaar JP; Schuurman PR; Bouma GJ
    Stroke; 2009 Jan; 40(1):317-20. PubMed ID: 18845800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the myogenic response in rat cerebral arteries of different calibers.
    Golding EM; Robertson CS; Bryan RM
    Brain Res; 1998 Mar; 785(2):293-8. PubMed ID: 9518656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRPV1 in arteries enables a rapid myogenic tone.
    Phan TX; Ton HT; Gulyás H; Pórszász R; Tóth A; Russo R; Kay MW; Sahibzada N; Ahern GP
    J Physiol; 2022 Apr; 600(7):1651-1666. PubMed ID: 35020949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage.
    Park KW; Metais C; Dai HB; Comunale ME; Sellke FW
    Anesth Analg; 2001 Apr; 92(4):990-6. PubMed ID: 11273938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of angiotensin II type 1 receptor subtypes within the cerebral microvasculature.
    Yamasaki E; Thakore P; Krishnan V; Earley S
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H461-H469. PubMed ID: 31886721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.