These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29654195)

  • 1. Extravascular Blood Augments Myogenic Constriction of Cerebral Arterioles: Implications for Hemorrhage-Induced Vasospasm.
    Deng W; Kandhi S; Zhang B; Huang A; Koller A; Sun D
    J Am Heart Assoc; 2018 Apr; 7(8):. PubMed ID: 29654195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of subarachnoid hemorrhage on parenchymal arteriolar function.
    Wellman GC; Koide M
    Acta Neurochir Suppl; 2013; 115():173-7. PubMed ID: 22890665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization.
    Nystoriak MA; O'Connor KP; Sonkusare SK; Brayden JE; Nelson MT; Wellman GC
    Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H803-12. PubMed ID: 21148767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High dietary salt alters arteriolar myogenic responsiveness in normotensive and hypertensive rats.
    Nurkiewicz TR; Boegehold MA
    Am J Physiol; 1998 Dec; 275(6):H2095-104. PubMed ID: 9843809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study.
    Friedrich B; Müller F; Feiler S; Schöller K; Plesnila N
    J Cereb Blood Flow Metab; 2012 Mar; 32(3):447-55. PubMed ID: 22146194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propentdyopents as Heme Degradation Intermediates Constrict Mouse Cerebral Arterioles and Are Present in the Cerebrospinal Fluid of Patients With Subarachnoid Hemorrhage.
    Joerk A; Ritter M; Langguth N; Seidel RA; Freitag D; Herrmann KH; Schaefgen A; Ritter M; Günther M; Sommer C; Braemer D; Walter J; Ewald C; Kalff R; Reichenbach JR; Westerhausen M; Pohnert G; Witte OW; Holthoff K
    Circ Res; 2019 Jun; 124(12):e101-e114. PubMed ID: 30947629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral artery myogenic reactivity: The next frontier in developing effective interventions for subarachnoid hemorrhage.
    Lidington D; Kroetsch JT; Bolz SS
    J Cereb Blood Flow Metab; 2018 Jan; 38(1):17-37. PubMed ID: 29135346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between Arteriole Membrane Potential and Cerebral Vasospasm after Subarachnoid Hemorrhage in Rats.
    Zhao D; He X; Liu L; Liu Q; Xu H; Ji Y; Zhu L; Wang G; Xu J; Wang Y
    Neurol India; 2020; 68(2):327-332. PubMed ID: 32189713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutically Targeting Tumor Necrosis Factor-α/Sphingosine-1-Phosphate Signaling Corrects Myogenic Reactivity in Subarachnoid Hemorrhage.
    Yagi K; Lidington D; Wan H; Fares JC; Meissner A; Sumiyoshi M; Ai J; Foltz WD; Nedospasov SA; Offermanns S; Nagahiro S; Macdonald RL; Bolz SS
    Stroke; 2015 Aug; 46(8):2260-70. PubMed ID: 26138121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced myogenic activation in skeletal muscle arterioles from spontaneously hypertensive rats.
    Falcone JC; Granger HJ; Meininger GA
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H1847-55. PubMed ID: 8285222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor necrosis factor-alpha mediates hemolysis-induced vasoconstriction and the cerebral vasospasm evoked by subarachnoid hemorrhage.
    Vecchione C; Frati A; Di Pardo A; Cifelli G; Carnevale D; Gentile MT; Carangi R; Landolfi A; Carullo P; Bettarini U; Antenucci G; Mascio G; Busceti CL; Notte A; Maffei A; Cantore GP; Lembo G
    Hypertension; 2009 Jul; 54(1):150-6. PubMed ID: 19470883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal maturation attenuates pressure-evoked myogenic tone and stretch-induced increases in Ca2+ in rat cerebral arteries.
    Charles SM; Zhang L; Longo LD; Buchholz JN; Pearce WJ
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R737-44. PubMed ID: 17553845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage.
    Ishiguro M; Puryear CB; Bisson E; Saundry CM; Nathan DJ; Russell SR; Tranmer BI; Wellman GC
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2217-25. PubMed ID: 12388249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subarachnoid blood causes pial arteriolar constriction in newborn pigs.
    Parfenova H; Shibata M; Leffler CW
    Stroke; 1993 Nov; 24(11):1729-34. PubMed ID: 8236349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage.
    Sun BL; Zheng CB; Yang MF; Yuan H; Zhang SM; Wang LX
    Cell Mol Neurobiol; 2009 Mar; 29(2):235-41. PubMed ID: 18821009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal responses of the human cerebral microcirculation to papaverin during aneurysm surgery.
    Pennings FA; Albrecht KW; Muizelaar JP; Schuurman PR; Bouma GJ
    Stroke; 2009 Jan; 40(1):317-20. PubMed ID: 18845800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the myogenic response in rat cerebral arteries of different calibers.
    Golding EM; Robertson CS; Bryan RM
    Brain Res; 1998 Mar; 785(2):293-8. PubMed ID: 9518656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRPV1 in arteries enables a rapid myogenic tone.
    Phan TX; Ton HT; Gulyás H; Pórszász R; Tóth A; Russo R; Kay MW; Sahibzada N; Ahern GP
    J Physiol; 2022 Apr; 600(7):1651-1666. PubMed ID: 35020949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage.
    Park KW; Metais C; Dai HB; Comunale ME; Sellke FW
    Anesth Analg; 2001 Apr; 92(4):990-6. PubMed ID: 11273938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of angiotensin II type 1 receptor subtypes within the cerebral microvasculature.
    Yamasaki E; Thakore P; Krishnan V; Earley S
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H461-H469. PubMed ID: 31886721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.