These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29654240)

  • 1. Electrically Enhanced Self-Thermophoresis of Laser-Heated Janus Particles under a Rotating Electric Field.
    Chen YL; Yang CX; Jiang HR
    Sci Rep; 2018 Apr; 8(1):5945. PubMed ID: 29654240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle concentrating and sorting under a rotating electric field by direct optical-liquid heating in a microfluidics chip.
    Chen YL; Jiang HR
    Biomicrofluidics; 2017 May; 11(3):034102. PubMed ID: 28503246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-thermophoresis of laser-heated spherical Janus particles.
    Avital EJ; Miloh T
    Eur Phys J E Soft Matter; 2021 Nov; 44(11):139. PubMed ID: 34791586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam.
    Jiang HR; Yoshinaga N; Sano M
    Phys Rev Lett; 2010 Dec; 105(26):268302. PubMed ID: 21231718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switching between laser-induced thermophoresis and thermal convection of liquid suspension in a microgap with variable dimension.
    Tsuji T; Taguchi S; Takamatsu H
    Electrophoresis; 2021 Nov; 42(21-22):2401-2409. PubMed ID: 34269479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.
    Walid Rezanoor M; Dutta P
    Biomicrofluidics; 2016 Mar; 10(2):024101. PubMed ID: 27014394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields.
    Gangwal S; Cayre OJ; Velev OD
    Langmuir; 2008 Dec; 24(23):13312-20. PubMed ID: 18973307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvalve using electrokinetic motion of electrically induced Janus droplet.
    Li M; Li D
    Anal Chim Acta; 2018 Aug; 1021():85-94. PubMed ID: 29681288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propulsion of Active Colloids by Self-Induced Field Gradients.
    Boymelgreen A; Yossifon G; Miloh T
    Langmuir; 2016 Sep; 32(37):9540-7. PubMed ID: 27611819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining DC and AC electric fields with deterministic lateral displacement for micro- and nano-particle separation.
    Calero V; Garcia-Sanchez P; Ramos A; Morgan H
    Biomicrofluidics; 2019 Sep; 13(5):054110. PubMed ID: 31673301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotating Motion of an Oil Droplet in a Circular Channel Subjected to a Transverse Alternating Electric Field.
    Mochizuki T
    ACS Omega; 2018 Jan; 3(1):1031-1040. PubMed ID: 31457946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NIR light-driven pure organic Janus-like nanoparticles for thermophoresis-enhanced photothermal therapy.
    Ni Z; Zhang D; Zhen S; Liang X; Gong X; Zhao Z; Ding D; Feng G; Tang BZ
    Biomaterials; 2023 Oct; 301():122261. PubMed ID: 37531775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully Steerable Symmetric Thermoplasmonic Microswimmers.
    Fränzl M; Muiños-Landin S; Holubec V; Cichos F
    ACS Nano; 2021 Feb; 15(2):3434-3440. PubMed ID: 33556235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of frequency and gravity on the orientation of active metallo-dielectric Janus particles translating under a uniform applied alternating-current electric field.
    Boymelgreen A; Kunti G; García-Sánchez P; Yossifon G
    Soft Matter; 2024 May; 20(20):4143-4151. PubMed ID: 38738604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Optical and Chemical Control of a Microsized Photofueled Janus Particle.
    Simoncelli S; Summer J; Nedev S; Kühler P; Feldmann J
    Small; 2016 Jun; 12(21):2854-8. PubMed ID: 27028413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency Response of Induced-Charge Electrophoretic Metallic Janus Particles.
    Shen C; Jiang Z; Li L; Gilchrist JF; Ou-Yang HD
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32213879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed assembly of Janus particles under high frequency ac-electric fields: effects of medium conductivity and colloidal surface chemistry.
    Zhang L; Zhu Y
    Langmuir; 2012 Sep; 28(37):13201-7. PubMed ID: 22924894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-induced self-thermophoresis of Janus spheroidal nanoparticles.
    Miloh T; Nagler J
    Electrophoresis; 2018 Oct; 39(19):2417-2424. PubMed ID: 30010202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophoresis in liquids: a molecular dynamics simulation study.
    Han M
    J Colloid Interface Sci; 2005 Apr; 284(1):339-48. PubMed ID: 15752822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric polarizability of metallodielectric Janus particles in electrolyte solutions.
    Behdani B; Wang K; Silvera Batista CA
    Soft Matter; 2021 Oct; 17(41):9410-9419. PubMed ID: 34608476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.