These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29654568)

  • 1. Application of Bayesian networks in a hierarchical structure for environmental risk assessment: a case study of the Gabric Dam, Iran.
    Malekmohammadi B; Tayebzadeh Moghadam N
    Environ Monit Assess; 2018 Apr; 190(5):279. PubMed ID: 29654568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "This Is What We Don't Know": Treating Epistemic Uncertainty in Bayesian Networks for Risk Assessment.
    Sahlin U; Helle I; Perepolkin D
    Integr Environ Assess Manag; 2021 Jan; 17(1):221-232. PubMed ID: 33151017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.
    Hosseini M; Kerachian R
    Environ Monit Assess; 2017 Sep; 189(9):433. PubMed ID: 28779429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utility of Bayesian networks in QMRA-based evaluation of risk reduction options for recycled water.
    Beaudequin D; Harden F; Roiko A; Mengersen K
    Sci Total Environ; 2016 Jan; 541():1393-1409. PubMed ID: 26479913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Networks in Environmental Risk Assessment: A Review.
    Kaikkonen L; Parviainen T; Rahikainen M; Uusitalo L; Lehikoinen A
    Integr Environ Assess Manag; 2021 Jan; 17(1):62-78. PubMed ID: 32841493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran).
    Nasiri H; Boloorani AD; Sabokbar HA; Jafari HR; Hamzeh M; Rafii Y
    Environ Monit Assess; 2013 Jan; 185(1):707-18. PubMed ID: 22402992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of surrogate indicators for the evaluation of potential health risks due to poor urban water quality: A Bayesian Network approach.
    Wijesiri B; Deilami K; McGree J; Goonetilleke A
    Environ Pollut; 2018 Feb; 233():655-661. PubMed ID: 29121600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk of fire occurrence in arid and semi-arid ecosystems of Iran: an investigation using Bayesian belief networks.
    Bashari H; Naghipour AA; Khajeddin SJ; Sangoony H; Tahmasebi P
    Environ Monit Assess; 2016 Sep; 188(9):531. PubMed ID: 27553945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Bayesian network modeling to pathology informatics.
    Onisko A; Druzdzel MJ; Austin RM
    Diagn Cytopathol; 2019 Jan; 47(1):41-47. PubMed ID: 30451397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling a powerful marine and offshore decision-support solution through Bayesian network technique.
    Eleye-Datubo AG; Wall A; Saajedi A; Wang J
    Risk Anal; 2006 Jun; 26(3):695-721. PubMed ID: 16834628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the water pollution risk of dam and dike-break floods in the inundated area.
    Zhang Y; Li Z; Ge W; Wang J; Guo X; Wang T; Zhang H
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):76365-76377. PubMed ID: 35668251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flood risk assessment by using an interpretative structural modeling based Bayesian network approach (ISM-BN): An urban-level analysis of Shenzhen, China.
    Li G; Wu X; Han JC; Li B; Huang Y; Wang Y
    J Environ Manage; 2023 Mar; 329():117040. PubMed ID: 36535147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A probabilistic water quality index for river water quality assessment: a case study.
    Nikoo MR; Kerachian R; Malakpour-Estalaki S; Bashi-Azghadi SN; Azimi-Ghadikolaee MM
    Environ Monit Assess; 2011 Oct; 181(1-4):465-78. PubMed ID: 21188505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased Use of Bayesian Network Models Has Improved Environmental Risk Assessments.
    Moe SJ; Carriger JF; Glendell M
    Integr Environ Assess Manag; 2021 Jan; 17(1):53-61. PubMed ID: 33205856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond QMRA: Modelling microbial health risk as a complex system using Bayesian networks.
    Beaudequin D; Harden F; Roiko A; Stratton H; Lemckert C; Mengersen K
    Environ Int; 2015 Jul; 80():8-18. PubMed ID: 25827265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental impact assessment of dam-break floods considering multiple influencing factors.
    Zhang Y; Li Z; Wang J; Ge W; Chen X
    Sci Total Environ; 2022 Sep; 837():155853. PubMed ID: 35568182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian Approach to Integrated Ecological and Human Health Risk Assessment for the South River, Virginia Mercury-Contaminated Site.
    Harris MJ; Stinson J; Landis WG
    Risk Anal; 2017 Jul; 37(7):1341-1357. PubMed ID: 28121045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated Shannon's Entropy-TOPSIS methodology for environmental risk assessment of Helleh protected area in Iran.
    Jozi SA; Shafiee M; MoradiMajd N; Saffarian S
    Environ Monit Assess; 2012 Nov; 184(11):6913-22. PubMed ID: 22193631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tutorial of the probabilistic methods Bayesian networks and influence diagrams applied to medicine.
    Nistal-Nuño B
    J Evid Based Med; 2018 May; 11(2):112-124. PubMed ID: 29878581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.